#!/usr/bin/env python3 """ convert_roads.py BoopLabs Pupmap Europe/Nordics Roads GeoJSON Version: 2025-10-03 """ import geopandas as gpd # ---------- User paths ---------- roads_shp = "ne_10m_roads.shp" output_dir = "/mnt/storage/docker-data/pupmap/www/data/" # ---------- Europe + Nordics ISO3 ---------- europe_nordics = [ 'ALB','AND','AUT','BEL','BIH','BGR','HRV','CYP','CZE','DNK','EST','FIN','FRA','DEU', 'GRC','HUN','ISL','IRL','ITA','LVA','LTU','LUX','MLT','MDA','MCO','MNE','NLD','NOR', 'POL','PRT','ROU','RUS','SMR','SRB','SVK','SVN','ESP','SWE','CHE','UKR','GBR','VAT' ] # ---------- Load roads shapefile ---------- print("Processing roads...") roads = gpd.read_file(roads_shp) # Filter Europe/Nordics only if ADM0_A3 exists if 'ADM0_A3' in roads.columns: roads_filtered = roads[roads['ADM0_A3'].isin(europe_nordics)].copy() else: roads_filtered = roads.copy() # fallback: include all # Determine road type column if 'TYPE' in roads_filtered.columns: roads_filtered = roads_filtered.rename(columns={'TYPE': 'type'}) elif 'fclass' in roads_filtered.columns: roads_filtered = roads_filtered.rename(columns={'fclass': 'type'}) elif 'ROADCLASS' in roads_filtered.columns: roads_filtered = roads_filtered.rename(columns={'ROADCLASS': 'type'}) else: roads_filtered['type'] = 'road' # fallback # Keep only necessary columns roads_filtered = roads_filtered[['type','geometry']] # Remove duplicates and empty geometries roads_filtered = roads_filtered.loc[:, ~roads_filtered.columns.duplicated()] roads_filtered = roads_filtered[roads_filtered.geometry.notnull()] # Save to GeoJSON roads_geojson_path = output_dir + "roads_europe.geojson" roads_filtered.to_file(roads_geojson_path, driver='GeoJSON') print(f"Saved {roads_geojson_path} ({len(roads_filtered)} features)")