First init.

This commit is contained in:
2025-10-12 09:13:56 +02:00
commit 1548aeaf9b
458 changed files with 118808 additions and 0 deletions

674
libraries/SD/LICENSE.txt Normal file
View File

@@ -0,0 +1,674 @@
GNU GENERAL PUBLIC LICENSE
Version 3, 29 June 2007
Copyright (C) 2007 Free Software Foundation, Inc. <https://fsf.org/>
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.
Preamble
The GNU General Public License is a free, copyleft license for
software and other kinds of works.
The licenses for most software and other practical works are designed
to take away your freedom to share and change the works. By contrast,
the GNU General Public License is intended to guarantee your freedom to
share and change all versions of a program--to make sure it remains free
software for all its users. We, the Free Software Foundation, use the
GNU General Public License for most of our software; it applies also to
any other work released this way by its authors. You can apply it to
your programs, too.
When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
them if you wish), that you receive source code or can get it if you
want it, that you can change the software or use pieces of it in new
free programs, and that you know you can do these things.
To protect your rights, we need to prevent others from denying you
these rights or asking you to surrender the rights. Therefore, you have
certain responsibilities if you distribute copies of the software, or if
you modify it: responsibilities to respect the freedom of others.
For example, if you distribute copies of such a program, whether
gratis or for a fee, you must pass on to the recipients the same
freedoms that you received. You must make sure that they, too, receive
or can get the source code. And you must show them these terms so they
know their rights.
Developers that use the GNU GPL protect your rights with two steps:
(1) assert copyright on the software, and (2) offer you this License
giving you legal permission to copy, distribute and/or modify it.
For the developers' and authors' protection, the GPL clearly explains
that there is no warranty for this free software. For both users' and
authors' sake, the GPL requires that modified versions be marked as
changed, so that their problems will not be attributed erroneously to
authors of previous versions.
Some devices are designed to deny users access to install or run
modified versions of the software inside them, although the manufacturer
can do so. This is fundamentally incompatible with the aim of
protecting users' freedom to change the software. The systematic
pattern of such abuse occurs in the area of products for individuals to
use, which is precisely where it is most unacceptable. Therefore, we
have designed this version of the GPL to prohibit the practice for those
products. If such problems arise substantially in other domains, we
stand ready to extend this provision to those domains in future versions
of the GPL, as needed to protect the freedom of users.
Finally, every program is threatened constantly by software patents.
States should not allow patents to restrict development and use of
software on general-purpose computers, but in those that do, we wish to
avoid the special danger that patents applied to a free program could
make it effectively proprietary. To prevent this, the GPL assures that
patents cannot be used to render the program non-free.
The precise terms and conditions for copying, distribution and
modification follow.
TERMS AND CONDITIONS
0. Definitions.
"This License" refers to version 3 of the GNU General Public License.
"Copyright" also means copyright-like laws that apply to other kinds of
works, such as semiconductor masks.
"The Program" refers to any copyrightable work licensed under this
License. Each licensee is addressed as "you". "Licensees" and
"recipients" may be individuals or organizations.
To "modify" a work means to copy from or adapt all or part of the work
in a fashion requiring copyright permission, other than the making of an
exact copy. The resulting work is called a "modified version" of the
earlier work or a work "based on" the earlier work.
A "covered work" means either the unmodified Program or a work based
on the Program.
To "propagate" a work means to do anything with it that, without
permission, would make you directly or secondarily liable for
infringement under applicable copyright law, except executing it on a
computer or modifying a private copy. Propagation includes copying,
distribution (with or without modification), making available to the
public, and in some countries other activities as well.
To "convey" a work means any kind of propagation that enables other
parties to make or receive copies. Mere interaction with a user through
a computer network, with no transfer of a copy, is not conveying.
An interactive user interface displays "Appropriate Legal Notices"
to the extent that it includes a convenient and prominently visible
feature that (1) displays an appropriate copyright notice, and (2)
tells the user that there is no warranty for the work (except to the
extent that warranties are provided), that licensees may convey the
work under this License, and how to view a copy of this License. If
the interface presents a list of user commands or options, such as a
menu, a prominent item in the list meets this criterion.
1. Source Code.
The "source code" for a work means the preferred form of the work
for making modifications to it. "Object code" means any non-source
form of a work.
A "Standard Interface" means an interface that either is an official
standard defined by a recognized standards body, or, in the case of
interfaces specified for a particular programming language, one that
is widely used among developers working in that language.
The "System Libraries" of an executable work include anything, other
than the work as a whole, that (a) is included in the normal form of
packaging a Major Component, but which is not part of that Major
Component, and (b) serves only to enable use of the work with that
Major Component, or to implement a Standard Interface for which an
implementation is available to the public in source code form. A
"Major Component", in this context, means a major essential component
(kernel, window system, and so on) of the specific operating system
(if any) on which the executable work runs, or a compiler used to
produce the work, or an object code interpreter used to run it.
The "Corresponding Source" for a work in object code form means all
the source code needed to generate, install, and (for an executable
work) run the object code and to modify the work, including scripts to
control those activities. However, it does not include the work's
System Libraries, or general-purpose tools or generally available free
programs which are used unmodified in performing those activities but
which are not part of the work. For example, Corresponding Source
includes interface definition files associated with source files for
the work, and the source code for shared libraries and dynamically
linked subprograms that the work is specifically designed to require,
such as by intimate data communication or control flow between those
subprograms and other parts of the work.
The Corresponding Source need not include anything that users
can regenerate automatically from other parts of the Corresponding
Source.
The Corresponding Source for a work in source code form is that
same work.
2. Basic Permissions.
All rights granted under this License are granted for the term of
copyright on the Program, and are irrevocable provided the stated
conditions are met. This License explicitly affirms your unlimited
permission to run the unmodified Program. The output from running a
covered work is covered by this License only if the output, given its
content, constitutes a covered work. This License acknowledges your
rights of fair use or other equivalent, as provided by copyright law.
You may make, run and propagate covered works that you do not
convey, without conditions so long as your license otherwise remains
in force. You may convey covered works to others for the sole purpose
of having them make modifications exclusively for you, or provide you
with facilities for running those works, provided that you comply with
the terms of this License in conveying all material for which you do
not control copyright. Those thus making or running the covered works
for you must do so exclusively on your behalf, under your direction
and control, on terms that prohibit them from making any copies of
your copyrighted material outside their relationship with you.
Conveying under any other circumstances is permitted solely under
the conditions stated below. Sublicensing is not allowed; section 10
makes it unnecessary.
3. Protecting Users' Legal Rights From Anti-Circumvention Law.
No covered work shall be deemed part of an effective technological
measure under any applicable law fulfilling obligations under article
11 of the WIPO copyright treaty adopted on 20 December 1996, or
similar laws prohibiting or restricting circumvention of such
measures.
When you convey a covered work, you waive any legal power to forbid
circumvention of technological measures to the extent such circumvention
is effected by exercising rights under this License with respect to
the covered work, and you disclaim any intention to limit operation or
modification of the work as a means of enforcing, against the work's
users, your or third parties' legal rights to forbid circumvention of
technological measures.
4. Conveying Verbatim Copies.
You may convey verbatim copies of the Program's source code as you
receive it, in any medium, provided that you conspicuously and
appropriately publish on each copy an appropriate copyright notice;
keep intact all notices stating that this License and any
non-permissive terms added in accord with section 7 apply to the code;
keep intact all notices of the absence of any warranty; and give all
recipients a copy of this License along with the Program.
You may charge any price or no price for each copy that you convey,
and you may offer support or warranty protection for a fee.
5. Conveying Modified Source Versions.
You may convey a work based on the Program, or the modifications to
produce it from the Program, in the form of source code under the
terms of section 4, provided that you also meet all of these conditions:
a) The work must carry prominent notices stating that you modified
it, and giving a relevant date.
b) The work must carry prominent notices stating that it is
released under this License and any conditions added under section
7. This requirement modifies the requirement in section 4 to
"keep intact all notices".
c) You must license the entire work, as a whole, under this
License to anyone who comes into possession of a copy. This
License will therefore apply, along with any applicable section 7
additional terms, to the whole of the work, and all its parts,
regardless of how they are packaged. This License gives no
permission to license the work in any other way, but it does not
invalidate such permission if you have separately received it.
d) If the work has interactive user interfaces, each must display
Appropriate Legal Notices; however, if the Program has interactive
interfaces that do not display Appropriate Legal Notices, your
work need not make them do so.
A compilation of a covered work with other separate and independent
works, which are not by their nature extensions of the covered work,
and which are not combined with it such as to form a larger program,
in or on a volume of a storage or distribution medium, is called an
"aggregate" if the compilation and its resulting copyright are not
used to limit the access or legal rights of the compilation's users
beyond what the individual works permit. Inclusion of a covered work
in an aggregate does not cause this License to apply to the other
parts of the aggregate.
6. Conveying Non-Source Forms.
You may convey a covered work in object code form under the terms
of sections 4 and 5, provided that you also convey the
machine-readable Corresponding Source under the terms of this License,
in one of these ways:
a) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by the
Corresponding Source fixed on a durable physical medium
customarily used for software interchange.
b) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by a
written offer, valid for at least three years and valid for as
long as you offer spare parts or customer support for that product
model, to give anyone who possesses the object code either (1) a
copy of the Corresponding Source for all the software in the
product that is covered by this License, on a durable physical
medium customarily used for software interchange, for a price no
more than your reasonable cost of physically performing this
conveying of source, or (2) access to copy the
Corresponding Source from a network server at no charge.
c) Convey individual copies of the object code with a copy of the
written offer to provide the Corresponding Source. This
alternative is allowed only occasionally and noncommercially, and
only if you received the object code with such an offer, in accord
with subsection 6b.
d) Convey the object code by offering access from a designated
place (gratis or for a charge), and offer equivalent access to the
Corresponding Source in the same way through the same place at no
further charge. You need not require recipients to copy the
Corresponding Source along with the object code. If the place to
copy the object code is a network server, the Corresponding Source
may be on a different server (operated by you or a third party)
that supports equivalent copying facilities, provided you maintain
clear directions next to the object code saying where to find the
Corresponding Source. Regardless of what server hosts the
Corresponding Source, you remain obligated to ensure that it is
available for as long as needed to satisfy these requirements.
e) Convey the object code using peer-to-peer transmission, provided
you inform other peers where the object code and Corresponding
Source of the work are being offered to the general public at no
charge under subsection 6d.
A separable portion of the object code, whose source code is excluded
from the Corresponding Source as a System Library, need not be
included in conveying the object code work.
A "User Product" is either (1) a "consumer product", which means any
tangible personal property which is normally used for personal, family,
or household purposes, or (2) anything designed or sold for incorporation
into a dwelling. In determining whether a product is a consumer product,
doubtful cases shall be resolved in favor of coverage. For a particular
product received by a particular user, "normally used" refers to a
typical or common use of that class of product, regardless of the status
of the particular user or of the way in which the particular user
actually uses, or expects or is expected to use, the product. A product
is a consumer product regardless of whether the product has substantial
commercial, industrial or non-consumer uses, unless such uses represent
the only significant mode of use of the product.
"Installation Information" for a User Product means any methods,
procedures, authorization keys, or other information required to install
and execute modified versions of a covered work in that User Product from
a modified version of its Corresponding Source. The information must
suffice to ensure that the continued functioning of the modified object
code is in no case prevented or interfered with solely because
modification has been made.
If you convey an object code work under this section in, or with, or
specifically for use in, a User Product, and the conveying occurs as
part of a transaction in which the right of possession and use of the
User Product is transferred to the recipient in perpetuity or for a
fixed term (regardless of how the transaction is characterized), the
Corresponding Source conveyed under this section must be accompanied
by the Installation Information. But this requirement does not apply
if neither you nor any third party retains the ability to install
modified object code on the User Product (for example, the work has
been installed in ROM).
The requirement to provide Installation Information does not include a
requirement to continue to provide support service, warranty, or updates
for a work that has been modified or installed by the recipient, or for
the User Product in which it has been modified or installed. Access to a
network may be denied when the modification itself materially and
adversely affects the operation of the network or violates the rules and
protocols for communication across the network.
Corresponding Source conveyed, and Installation Information provided,
in accord with this section must be in a format that is publicly
documented (and with an implementation available to the public in
source code form), and must require no special password or key for
unpacking, reading or copying.
7. Additional Terms.
"Additional permissions" are terms that supplement the terms of this
License by making exceptions from one or more of its conditions.
Additional permissions that are applicable to the entire Program shall
be treated as though they were included in this License, to the extent
that they are valid under applicable law. If additional permissions
apply only to part of the Program, that part may be used separately
under those permissions, but the entire Program remains governed by
this License without regard to the additional permissions.
When you convey a copy of a covered work, you may at your option
remove any additional permissions from that copy, or from any part of
it. (Additional permissions may be written to require their own
removal in certain cases when you modify the work.) You may place
additional permissions on material, added by you to a covered work,
for which you have or can give appropriate copyright permission.
Notwithstanding any other provision of this License, for material you
add to a covered work, you may (if authorized by the copyright holders of
that material) supplement the terms of this License with terms:
a) Disclaiming warranty or limiting liability differently from the
terms of sections 15 and 16 of this License; or
b) Requiring preservation of specified reasonable legal notices or
author attributions in that material or in the Appropriate Legal
Notices displayed by works containing it; or
c) Prohibiting misrepresentation of the origin of that material, or
requiring that modified versions of such material be marked in
reasonable ways as different from the original version; or
d) Limiting the use for publicity purposes of names of licensors or
authors of the material; or
e) Declining to grant rights under trademark law for use of some
trade names, trademarks, or service marks; or
f) Requiring indemnification of licensors and authors of that
material by anyone who conveys the material (or modified versions of
it) with contractual assumptions of liability to the recipient, for
any liability that these contractual assumptions directly impose on
those licensors and authors.
All other non-permissive additional terms are considered "further
restrictions" within the meaning of section 10. If the Program as you
received it, or any part of it, contains a notice stating that it is
governed by this License along with a term that is a further
restriction, you may remove that term. If a license document contains
a further restriction but permits relicensing or conveying under this
License, you may add to a covered work material governed by the terms
of that license document, provided that the further restriction does
not survive such relicensing or conveying.
If you add terms to a covered work in accord with this section, you
must place, in the relevant source files, a statement of the
additional terms that apply to those files, or a notice indicating
where to find the applicable terms.
Additional terms, permissive or non-permissive, may be stated in the
form of a separately written license, or stated as exceptions;
the above requirements apply either way.
8. Termination.
You may not propagate or modify a covered work except as expressly
provided under this License. Any attempt otherwise to propagate or
modify it is void, and will automatically terminate your rights under
this License (including any patent licenses granted under the third
paragraph of section 11).
However, if you cease all violation of this License, then your
license from a particular copyright holder is reinstated (a)
provisionally, unless and until the copyright holder explicitly and
finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means
prior to 60 days after the cessation.
Moreover, your license from a particular copyright holder is
reinstated permanently if the copyright holder notifies you of the
violation by some reasonable means, this is the first time you have
received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after
your receipt of the notice.
Termination of your rights under this section does not terminate the
licenses of parties who have received copies or rights from you under
this License. If your rights have been terminated and not permanently
reinstated, you do not qualify to receive new licenses for the same
material under section 10.
9. Acceptance Not Required for Having Copies.
You are not required to accept this License in order to receive or
run a copy of the Program. Ancillary propagation of a covered work
occurring solely as a consequence of using peer-to-peer transmission
to receive a copy likewise does not require acceptance. However,
nothing other than this License grants you permission to propagate or
modify any covered work. These actions infringe copyright if you do
not accept this License. Therefore, by modifying or propagating a
covered work, you indicate your acceptance of this License to do so.
10. Automatic Licensing of Downstream Recipients.
Each time you convey a covered work, the recipient automatically
receives a license from the original licensors, to run, modify and
propagate that work, subject to this License. You are not responsible
for enforcing compliance by third parties with this License.
An "entity transaction" is a transaction transferring control of an
organization, or substantially all assets of one, or subdividing an
organization, or merging organizations. If propagation of a covered
work results from an entity transaction, each party to that
transaction who receives a copy of the work also receives whatever
licenses to the work the party's predecessor in interest had or could
give under the previous paragraph, plus a right to possession of the
Corresponding Source of the work from the predecessor in interest, if
the predecessor has it or can get it with reasonable efforts.
You may not impose any further restrictions on the exercise of the
rights granted or affirmed under this License. For example, you may
not impose a license fee, royalty, or other charge for exercise of
rights granted under this License, and you may not initiate litigation
(including a cross-claim or counterclaim in a lawsuit) alleging that
any patent claim is infringed by making, using, selling, offering for
sale, or importing the Program or any portion of it.
11. Patents.
A "contributor" is a copyright holder who authorizes use under this
License of the Program or a work on which the Program is based. The
work thus licensed is called the contributor's "contributor version".
A contributor's "essential patent claims" are all patent claims
owned or controlled by the contributor, whether already acquired or
hereafter acquired, that would be infringed by some manner, permitted
by this License, of making, using, or selling its contributor version,
but do not include claims that would be infringed only as a
consequence of further modification of the contributor version. For
purposes of this definition, "control" includes the right to grant
patent sublicenses in a manner consistent with the requirements of
this License.
Each contributor grants you a non-exclusive, worldwide, royalty-free
patent license under the contributor's essential patent claims, to
make, use, sell, offer for sale, import and otherwise run, modify and
propagate the contents of its contributor version.
In the following three paragraphs, a "patent license" is any express
agreement or commitment, however denominated, not to enforce a patent
(such as an express permission to practice a patent or covenant not to
sue for patent infringement). To "grant" such a patent license to a
party means to make such an agreement or commitment not to enforce a
patent against the party.
If you convey a covered work, knowingly relying on a patent license,
and the Corresponding Source of the work is not available for anyone
to copy, free of charge and under the terms of this License, through a
publicly available network server or other readily accessible means,
then you must either (1) cause the Corresponding Source to be so
available, or (2) arrange to deprive yourself of the benefit of the
patent license for this particular work, or (3) arrange, in a manner
consistent with the requirements of this License, to extend the patent
license to downstream recipients. "Knowingly relying" means you have
actual knowledge that, but for the patent license, your conveying the
covered work in a country, or your recipient's use of the covered work
in a country, would infringe one or more identifiable patents in that
country that you have reason to believe are valid.
If, pursuant to or in connection with a single transaction or
arrangement, you convey, or propagate by procuring conveyance of, a
covered work, and grant a patent license to some of the parties
receiving the covered work authorizing them to use, propagate, modify
or convey a specific copy of the covered work, then the patent license
you grant is automatically extended to all recipients of the covered
work and works based on it.
A patent license is "discriminatory" if it does not include within
the scope of its coverage, prohibits the exercise of, or is
conditioned on the non-exercise of one or more of the rights that are
specifically granted under this License. You may not convey a covered
work if you are a party to an arrangement with a third party that is
in the business of distributing software, under which you make payment
to the third party based on the extent of your activity of conveying
the work, and under which the third party grants, to any of the
parties who would receive the covered work from you, a discriminatory
patent license (a) in connection with copies of the covered work
conveyed by you (or copies made from those copies), or (b) primarily
for and in connection with specific products or compilations that
contain the covered work, unless you entered into that arrangement,
or that patent license was granted, prior to 28 March 2007.
Nothing in this License shall be construed as excluding or limiting
any implied license or other defenses to infringement that may
otherwise be available to you under applicable patent law.
12. No Surrender of Others' Freedom.
If conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot convey a
covered work so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you may
not convey it at all. For example, if you agree to terms that obligate you
to collect a royalty for further conveying from those to whom you convey
the Program, the only way you could satisfy both those terms and this
License would be to refrain entirely from conveying the Program.
13. Use with the GNU Affero General Public License.
Notwithstanding any other provision of this License, you have
permission to link or combine any covered work with a work licensed
under version 3 of the GNU Affero General Public License into a single
combined work, and to convey the resulting work. The terms of this
License will continue to apply to the part which is the covered work,
but the special requirements of the GNU Affero General Public License,
section 13, concerning interaction through a network will apply to the
combination as such.
14. Revised Versions of this License.
The Free Software Foundation may publish revised and/or new versions of
the GNU General Public License from time to time. Such new versions will
be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.
Each version is given a distinguishing version number. If the
Program specifies that a certain numbered version of the GNU General
Public License "or any later version" applies to it, you have the
option of following the terms and conditions either of that numbered
version or of any later version published by the Free Software
Foundation. If the Program does not specify a version number of the
GNU General Public License, you may choose any version ever published
by the Free Software Foundation.
If the Program specifies that a proxy can decide which future
versions of the GNU General Public License can be used, that proxy's
public statement of acceptance of a version permanently authorizes you
to choose that version for the Program.
Later license versions may give you additional or different
permissions. However, no additional obligations are imposed on any
author or copyright holder as a result of your choosing to follow a
later version.
15. Disclaimer of Warranty.
THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
16. Limitation of Liability.
IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.
17. Interpretation of Sections 15 and 16.
If the disclaimer of warranty and limitation of liability provided
above cannot be given local legal effect according to their terms,
reviewing courts shall apply local law that most closely approximates
an absolute waiver of all civil liability in connection with the
Program, unless a warranty or assumption of liability accompanies a
copy of the Program in return for a fee.
END OF TERMS AND CONDITIONS
How to Apply These Terms to Your New Programs
If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve this is to make it
free software which everyone can redistribute and change under these terms.
To do so, attach the following notices to the program. It is safest
to attach them to the start of each source file to most effectively
state the exclusion of warranty; and each file should have at least
the "copyright" line and a pointer to where the full notice is found.
<one line to give the program's name and a brief idea of what it does.>
Copyright (C) <year> <name of author>
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.
Also add information on how to contact you by electronic and paper mail.
If the program does terminal interaction, make it output a short
notice like this when it starts in an interactive mode:
<program> Copyright (C) <year> <name of author>
This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
This is free software, and you are welcome to redistribute it
under certain conditions; type `show c' for details.
The hypothetical commands `show w' and `show c' should show the appropriate
parts of the General Public License. Of course, your program's commands
might be different; for a GUI interface, you would use an "about box".
You should also get your employer (if you work as a programmer) or school,
if any, to sign a "copyright disclaimer" for the program, if necessary.
For more information on this, and how to apply and follow the GNU GPL, see
<https://www.gnu.org/licenses/>.
The GNU General Public License does not permit incorporating your program
into proprietary programs. If your program is a subroutine library, you
may consider it more useful to permit linking proprietary applications with
the library. If this is what you want to do, use the GNU Lesser General
Public License instead of this License. But first, please read
<https://www.gnu.org/licenses/why-not-lgpl.html>.

13
libraries/SD/README.adoc Normal file
View File

@@ -0,0 +1,13 @@
:repository-owner: arduino-libraries
:repository-name: SD
= {repository-name} Library for Arduino =
image:https://github.com/{repository-owner}/{repository-name}/actions/workflows/check-arduino.yml/badge.svg["Check Arduino status", link="https://github.com/{repository-owner}/{repository-name}/actions/workflows/check-arduino.yml"]
image:https://github.com/{repository-owner}/{repository-name}/actions/workflows/compile-examples.yml/badge.svg["Compile Examples status", link="https://github.com/{repository-owner}/{repository-name}/actions/workflows/compile-examples.yml"]
image:https://github.com/{repository-owner}/{repository-name}/actions/workflows/spell-check.yml/badge.svg["Spell Check status", link="https://github.com/{repository-owner}/{repository-name}/actions/workflows/spell-check.yml"]
The SD library allows for reading from and writing to SD cards.
For more information about this library please visit us at
http://www.arduino.cc/en/Reference/{repository-name}

894
libraries/SD/docs/api.md Normal file
View File

@@ -0,0 +1,894 @@
# SD library
## SD class
The SD class provides functions for accessing the SD card and manipulating its files and directories.
### `begin()`
Initializes the SD library and card. This begins use of the SPI bus (digital pins 11, 12, and 13 on most Arduino boards; 50, 51, and 52 on the Mega) and the chip select pin, which defaults to the hardware SS pin (pin 10 on most Arduino boards, 53 on the Mega). Note that even if you use a different chip select pin, **the hardware SS pin must be kept as an output or the SD library functions will not work**.
#### Syntax
```
SD.begin()
SD.begin(cspin)
```
#### Parameters
* `cspin` (optional): the pin connected to the chip select line of the SD card; defaults to the hardware SS line of the SPI bus.
#### Returns
1 on success, 0 on failure.
#### See also
* [exists()](#exists)
* [mkdir()](#mkdir)
* [open()](#open)
* [remove()](#remove)
* [rmdir()](#rmdir)
### `exists()`
Tests whether a file or directory exists on the SD card.
#### Syntax
```
SD.exists(filename)
```
#### Parameters
* `filename`: the name of the file to test for existence, which can include directories (delimited by forward-slashes, /).
#### Returns
1 if the file or directory exists, 0 if not.
#### See also
* [begin()](#begin)
* [mkdir()](#mkdir)
* [open()](#open)
* [remove()](#remove)
* [rmdir()](#rmdir)
### `exists()`
Tests whether a file or directory exists on the SD card.
#### Syntax
```
SD.exists(filename)
```
#### Parameters
* `filename`: the name of the file to test for existence, which can include directories (delimited by forward-slashes, /).
#### Returns
1 if the file or directory exists, 0 if not.
#### See also
* [begin()](#begin)
* [mkdir()](#mkdir)
* [open()](#open)
* [remove()](#remove)
* [rmdir()](#rmdir)
### `mkdir()`
Create a directory on the SD card. This will also create any intermediate directories that don't already exists; e.g. `SD.mkdir("a/b/c")` will create a, b, and c.
#### Syntax
```
SD.mkdir(filename)
```
#### Parameters
* `filename`: the name of the directory to create, with sub-directories separated by forward-slashes, /.
#### Returns
1 if the creating of the directory succeeded, 0 if not.
#### See also
* [begin()](#begin)
* [exists()](#exists)
* [open()](#open)
* [remove()](#remove)
* [rmdir()](#rmdir)
### `open()`
Opens a file on the SD card. If the file is opened for writing, it will be created if it doesn't already exist (but the directory containing it must already exist).
#### Syntax
```
SD.open(filepath)
SD.open(filepath, mode)
```
#### Parameters
* `filepath`: the name of the file to open, which can include directories (delimited by forward-slashes, /).
* `mode` (optional): the mode in which to open the file. Mode can be `FILE_READ` (open the file for reading, starting at the beginning of the file) or `FILE_WRITE` (open the file for reading and writing, starting at the end of the file).
#### Returns
A File object referring to the opened file; if the file couldn't be opened, this object will evaluate to false in a boolean context, i.e. you can test the return value with "`if (f)`".
#### See also
* [begin()](#begin)
* [exists()](#exists)
* [mkdir()](#mkdir)
* [remove()](#remove)
* [rmdir()](#rmdir)
### `remove()`
Remove a file from the SD card.
#### Syntax
```
SD.remove(filename)
```
#### Parameters
* `filename`: the name of the file to remove, which can include directories (delimited by forward-slashes, /).
#### Returns
1 if the removal of the file succeeded, 0 if not.
#### See also
* [begin()](#begin)
* [exists()](#exists)
* [mkdir()](#mkdir)
* [open()](#open)
* [rmdir()](#rmdir)
### `rmdir()`
Remove a directory from the SD card. The directory must be empty.
#### Syntax
```
SD.rmdir(filename)
```
#### Parameters
* `filename`: the name of the directory to remove, with sub-directories separated by forward-slashes, /.
#### Returns
1 if the removal of the directory succeeded, 0 if not (if the directory didn't exist, the return value is unspecified).
#### See also
* [begin()](#begin)
* [exists()](#exists)
* [mkdir()](#mkdir)
* [open()](#open)
* [remove()](#remove)
## File class
The File class allows for reading from and writing to individual files on the SD card.
### `name()`
Returns the file name
#### Syntax
```
file.name()
```
#### Parameters
None.
#### Returns
The file name.
#### See also
* [available()](#available)
* [close()](#close)
* [flush()](#flush)
* [peek()](#peek)
* [position()](#position)
* [print()](#print)
* [println()](#println)
* [seek()](#seek)
* [size()](#size)
* [read()](#read)
* [write()](#write)
* [isDirectory()](#isdirectory)
* [openNextFile()](#opennextfile)
* [rewindDirectory()](#rewinddirectory)
### `available()`
Check if there are any bytes available for reading from the file. `available()` inherits from the [Stream](https://www.arduino.cc/reference/en/language/functions/communication/stream/) utility class.
#### Syntax
```
file.available()
```
#### Parameters
* `file`: an instance of the File class (returned by [SD.open()](#open)).
#### Returns
The number of bytes available as an integer.
#### See also
* [name()](#name)
* [close()](#close)
* [flush()](#flush)
* [peek()](#peek)
* [position()](#position)
* [print()](#print)
* [println()](#println)
* [seek()](#seek)
* [size()](#size)
* [read()](#read)
* [write()](#write)
* [isDirectory()](#isdirectory)
* [openNextFile()](#opennextfile)
* [rewindDirectory()](#rewinddirectory)
### `close()`
Close the file, and ensure that any data written to it is physically saved to the SD card.
#### Syntax
```
file.close()
```
#### Parameters
* `file`: an instance of the File class (returned by [SD.open()](#open)).
#### Returns
None.
#### See also
* [name()](#name)
* [available()](#available)
* [flush()](#flush)
* [peek()](#peek)
* [position()](#position)
* [print()](#print)
* [println()](#println)
* [seek()](#seek)
* [size()](#size)
* [read()](#read)
* [write()](#write)
* [isDirectory()](#isdirectory)
* [openNextFile()](#opennextfile)
* [rewindDirectory()](#rewinddirectory)
### `flush()`
Ensures that any bytes written to the file are physically saved to the SD card. This is done automatically when the file is closed. `flush()` inherits from the [Stream](https://www.arduino.cc/reference/en/language/functions/communication/stream/) utility class.
#### Syntax
```
file.flush()
```
#### Parameters
* `file`: an instance of the File class (returned by [SD.open()](#open)).
#### Returns
None.
#### See also
* [name()](#name)
* [available()](#available)
* [close()](#close)
* [peek()](#peek)
* [position()](#position)
* [print()](#print)
* [println()](#println)
* [seek()](#seek)
* [size()](#size)
* [read()](#read)
* [write()](#write)
* [isDirectory()](#isdirectory)
* [openNextFile()](#opennextfile)
* [rewindDirectory()](#rewinddirectory)
### `peek()`
Read a byte from the file without advancing to the next one. That is, successive calls to peek() will return the same value, as will the next call to read(). `peek()` inherits from the [Stream](https://www.arduino.cc/reference/en/language/functions/communication/stream/) utility class.
#### Syntax
```
file.peek()
```
#### Parameters
* `file`: an instance of the File class (returned by [SD.open()](#open)).
#### Returns
The next byte (or character), or -1 if none is available.
#### See also
* [name()](#name)
* [available()](#available)
* [close()](#close)
* [flush()](#flush)
* [position()](#position)
* [print()](#print)
* [println()](#println)
* [seek()](#seek)
* [size()](#size)
* [read()](#read)
* [write()](#write)
* [isDirectory()](#isdirectory)
* [openNextFile()](#opennextfile)
* [rewindDirectory()](#rewinddirectory)
### `position()`
Get the current position within the file (i.e. the location to which the next byte will be read from or written to).
#### Syntax
```
file.position()
file.position(file)
```
#### Parameters
* `file`: an instance of the File class (returned by [SD.open()](#open)).
#### Returns
The position within the file (unsigned long).
#### See also
* [name()](#name)
* [available()](#available)
* [close()](#close)
* [flush()](#flush)
* [peek()](#peek)
* [print()](#print)
* [println()](#println)
* [seek()](#seek)
* [size()](#size)
* [read()](#read)
* [write()](#write)
* [isDirectory()](#isdirectory)
* [openNextFile()](#opennextfile)
* [rewindDirectory()](#rewinddirectory)
### `print()`
Print data to the file, which must have been opened for writing. Prints numbers as a sequence of digits, each an ASCII character (e.g. the number 123 is sent as the three characters '1', '2', '3').
#### Syntax
```
file.print(data)
file.print(data, BASE)
```
#### Parameters
* `file`: an instance of the File class (returned by [SD.open()](#open)).
* `data`: the data to print (char, byte, int, long, or string).
* `BASE` (optional): the base in which to print numbers; BIN for binary (base 2), DEC for decimal (base 10), OCT for octal (base 8), HEX for hexadecimal (base 16).
#### Returns
The number of bytes written, though reading that number is optional.
#### See also
* [name()](#name)
* [available()](#available)
* [close()](#close)
* [flush()](#flush)
* [peek()](#peek)
* [position()](#position)
* [println()](#println)
* [seek()](#seek)
* [size()](#size)
* [read()](#read)
* [write()](#write)
* [isDirectory()](#isdirectory)
* [openNextFile()](#opennextfile)
* [rewindDirectory()](#rewinddirectory)
### `println()`
Print data, followed by a carriage return and newline, to the File, which must have been opened for writing. Prints numbers as a sequence of digits, each an ASCII character (e.g. the number 123 is sent as the three characters '1', '2', '3').
#### Syntax
```
file.println()
file.println(data)
file.println(data, BASE)
```
#### Parameters
* `file`: an instance of the File class (returned by [SD.open()](#open)).
* `data`: the data to print (char, byte, int, long, or string).
* `BASE` (optional): the base in which to print numbers; BIN for binary (base 2), DEC for decimal (base 10), OCT for octal (base 8), HEX for hexadecimal (base 16).
#### Returns
The number of bytes written, though reading that number is optional.
#### See also
* [name()](#name)
* [available()](#available)
* [close()](#close)
* [flush()](#flush)
* [peek()](#peek)
* [position()](#position)
* [print()](#print)
* [seek()](#seek)
* [size()](#size)
* [read()](#read)
* [write()](#write)
* [isDirectory()](#isdirectory)
* [openNextFile()](#opennextfile)
* [rewindDirectory()](#rewinddirectory)
### `seek()`
Seek to a new position in the file, which must be between 0 and the size of the file (inclusive).
#### Syntax
```
file.seek(pos)
```
#### Parameters
* `file`: an instance of the File class (returned by [SD.open()](#open)).
* `pos`: the position to which to seek (unsigned long).
#### Returns
1 on success, 0 on failure.
#### See also
* [name()](#name)
* [available()](#available)
* [close()](#close)
* [flush()](#flush)
* [peek()](#peek)
* [position()](#position)
* [print()](#print)
* [println()](#println)
* [size()](#size)
* [read()](#read)
* [write()](#write)
* [isDirectory()](#isdirectory)
* [openNextFile()](#opennextfile)
* [rewindDirectory()](#rewinddirectory)
### `size()`
Get the size of the file.
#### Syntax
```
file.size()
```
#### Parameters
* `file`: an instance of the File class (returned by [SD.open()](#open)).
#### Returns
The size of the file in bytes (unsigned long).
#### See also
* [name()](#name)
* [available()](#available)
* [close()](#close)
* [flush()](#flush)
* [peek()](#peek)
* [position()](#position)
* [print()](#print)
* [println()](#println)
* [seek()](#seek)
* [read()](#read)
* [write()](#write)
* [isDirectory()](#isdirectory)
* [openNextFile()](#opennextfile)
* [rewindDirectory()](#rewinddirectory)
### `read()`
Read from the file. read() inherits from the [Stream](https://www.arduino.cc/reference/en/language/functions/communication/stream/) utility class.
#### Syntax
```
file.read()
file.read(buf, len)
```
#### Parameters
* `file`: an instance of the File class (returned by [SD.open()](#open)).
* `buf`: an array of characters or bytes.
* `len`: the number of elements in buf.
#### Returns
When used as `file.read()`:
The next byte (or character), or -1 if none is available.
When used as `file.read(buf, len)`:
The amount of bytes read, or -1 if an error occurred.
#### See also
* [name()](#name)
* [available()](#available)
* [close()](#close)
* [flush()](#flush)
* [peek()](#peek)
* [position()](#position)
* [print()](#print)
* [println()](#println)
* [seek()](#seek)
* [size()](#size)
* [write()](#write)
* [isDirectory()](#isdirectory)
* [openNextFile()](#opennextfile)
* [rewindDirectory()](#rewinddirectory)
### `write()`
Write data to the file.
#### Syntax
```
file.write(data)
file.write(buf, len)
```
#### Parameters
* `file`: an instance of the File class (returned by [SD.open()](#open)).
* `data`: the byte, char, or string (char *) to write.
* `buf`: an array of characters or bytes.
* `len`: the number of elements in buf.
#### Returns
The number of bytes written, though reading that number is optional.
#### See also
* [name()](#name)
* [available()](#available)
* [close()](#close)
* [flush()](#flush)
* [peek()](#peek)
* [position()](#position)
* [print()](#print)
* [println()](#println)
* [seek()](#seek)
* [size()](#size)
* [read()](#read)
* [isDirectory()](#isdirectory)
* [openNextFile()](#opennextfile)
* [rewindDirectory()](#rewinddirectory)
### `isDirectory()`
Directories (or folders) are special kinds of files, this function reports if the current file is a directory or not.
#### Syntax
```
file.isDirectory()
```
#### Parameters
* `file`: an instance of the File class (returned by [SD.open()](#open)).
#### Returns
1 if the current file is a directory, 0 if not.
#### Example
```
#include <SD.h>
File root;
void setup() {
Serial.begin(9600);
pinMode(10, OUTPUT);
SD.begin(10);
root = SD.open("/");
printDirectory(root, 0);
Serial.println("Done!");
}
void loop() {
// Nothing happens after setup finishes.
}
void printDirectory(File dir, int numTabs) {
while (true) {
File entry = dir.openNextFile();
if (!entry) {
// No more files
// Serial.println("**nomorefiles**");
break;
}
for (uint8_t i = 0; i < numTabs; i++) {
Serial.print('\t');
}
Serial.print(entry.name());
if (entry.isDirectory()) {
Serial.println("/");
printDirectory(entry, numTabs + 1);
} else {
// Files have sizes, directories do not
Serial.print("\t\t");
Serial.println(entry.size(), DEC);
}
}
}
```
#### See also
* [name()](#name)
* [available()](#available)
* [close()](#close)
* [flush()](#flush)
* [peek()](#peek)
* [position()](#position)
* [print()](#print)
* [println()](#println)
* [seek()](#seek)
* [size()](#size)
* [read()](#read)
* [write()](#write)
* [openNextFile()](#opennextfile)
* [rewindDirectory()](#rewinddirectory)
### `openNextFile()`
Reports the next file or folder in a directory.
#### Syntax
```
file.openNextFile()
```
#### Parameters
* `file`: an instance of the File class (returned by [SD.open()](#open)).
#### Returns
The next file or folder in the path (char).
#### Example
```
#include <SD.h>
File root;
void setup() {
Serial.begin(9600);
pinMode(10, OUTPUT);
SD.begin(10);
root = SD.open("/");
printDirectory(root, 0);
delay(2000);
Serial.println();
Serial.println("Rewinding, and repeating below:");
Serial.println();
delay(2000);
root.rewindDirectory();
printDirectory(root, 0);
root.close();
}
void loop() {
// Nothing happens after setup finishes.
}
void printDirectory(File dir, int numTabs) {
while (true) {
File entry = dir.openNextFile();
if (!entry) {
if (numTabs == 0)
Serial.println("** Done **");
return;
}
for (uint8_t i = 0; i < numTabs; i++)
Serial.print('\t');
Serial.print(entry.name());
if (entry.isDirectory()) {
Serial.println("/");
printDirectory(entry, numTabs + 1);
} else {
Serial.print("\t\t");
Serial.println(entry.size(), DEC);
}
entry.close();
}
}
```
#### See also
* [name()](#name)
* [available()](#available)
* [close()](#close)
* [flush()](#flush)
* [peek()](#peek)
* [position()](#position)
* [print()](#print)
* [println()](#println)
* [seek()](#seek)
* [size()](#size)
* [read()](#read)
* [write()](#write)
* [isDirectory()](#isdirectory)
* [rewindDirectory()](#rewinddirectory)
### `rewindDirectory()`
This function will bring you back to the first file in the directory, used in conjunction with [`openNextFile()`](#opennextfile).
#### Syntax
```
file.rewindDirectory()
```
#### Parameters
* `file`: an instance of the File class (returned by [SD.open()](#open)).
#### Returns
None.
#### Example
```
#include <SD.h>
File root;
void setup() {
Serial.begin(9600);
pinMode(10, OUTPUT);
SD.begin(10);
root = SD.open("/");
printDirectory(root, 0);
Serial.println();
Serial.println("PRINT AGAIN");
Serial.println("-----------");
root.rewindDirectory(); // Return to the first file in the directory
printDirectory(root, 0);
Serial.println("Done!");
}
void loop() {
// Nothing happens after setup finishes
}
void printDirectory(File dir, int numTabs) {
while (true) {
File entry = dir.openNextFile();
if (!entry) {
// No more files
break;
}
for (uint8_t i = 0; i < numTabs; i++) {
Serial.print('\t');
}
Serial.print(entry.name());
if (entry.isDirectory()) {
Serial.println("/");
printDirectory(entry, numTabs + 1);
} else {
// Files have sizes, directories do not
Serial.print("\t\t");
Serial.println(entry.size(), DEC);
}
}
}
```
#### See also
* [name()](#name)
* [available()](#available)
* [close()](#close)
* [flush()](#flush)
* [peek()](#peek)
* [position()](#position)
* [print()](#print)
* [println()](#println)
* [seek()](#seek)
* [size()](#size)
* [read()](#read)
* [write()](#write)
* [isDirectory()](#isdirectory)
* [openNextFile()](#opennextfile)

View File

@@ -0,0 +1,23 @@
# SD library
The SD library allows for reading from and writing to SD cards, e.g. on the Arduino Ethernet Shield. It is built on [sdfatlib](http://code.google.com/p/sdfatlib/) by William Greiman. The library supports FAT16 and FAT32 file systems on standard SD cards and SDHC cards. It uses short 8.3 names for files. The file names passed to the SD library functions can include paths separated by forward-slashes, /, e.g. "directory/filename.txt". Because the working directory is always the root of the SD card, a name refers to the same file whether or not it includes a leading slash (e.g. "/file.txt" is equivalent to "file.txt"). As of version 1.0, the library supports opening multiple files.
The communication between the microcontroller and the SD card uses [SPI](https://www.arduino.cc/en/Reference/SPI), which takes place on digital pins 11, 12, and 13 (on most Arduino boards) or 50, 51, and 52 (Arduino Mega). Additionally, another pin must be used to select the SD card. This can be the hardware SS pin - pin 10 (on most Arduino boards) or pin 53 (on the Mega) - or another pin specified in the call to SD.begin(). Note that even if you don't use the hardware SS pin, it must be left as an output or the SD library won't work.
To use this library:
```
#include <SPI.h>
#include <SD.h>
```
[Notes on using the Library and various shields](https://www.arduino.cc/en/Reference/SDCardNotes).
## Examples
* [Card Info](https://www.arduino.cc/en/Tutorial/LibraryExamples/CardInfo): Get info about your SD card.
* [Datalogger](https://www.arduino.cc/en/Tutorial/LibraryExamples/Datalogger): Log data from three analog sensors to an SD card.
* [Dump File](https://www.arduino.cc/en/Tutorial/LibraryExamples/DumpFile): Read a file from the SD card.
* [Files](https://www.arduino.cc/en/Tutorial/LibraryExamples/Files): Create and destroy an SD card file.
* [List Files](https://www.arduino.cc/en/Tutorial/LibraryExamples/Listfiles): Print out the files in a directory on a SD card.
* [Read Write](https://www.arduino.cc/en/Tutorial/LibraryExamples/ReadWrite): Read and write data to and from an SD card.

View File

@@ -0,0 +1,118 @@
/*
SD card test
This example shows how use the utility libraries on which the
SD library is based in order to get info about your SD card.
Very useful for testing a card when you're not sure whether its working or not.
Pin numbers reflect the default SPI pins for Uno and Nano models.
The circuit:
SD card attached to SPI bus as follows:
** SDO - pin 11 on Arduino Uno/Duemilanove/Diecimila
** SDI - pin 12 on Arduino Uno/Duemilanove/Diecimila
** CLK - pin 13 on Arduino Uno/Duemilanove/Diecimila
** CS - depends on your SD card shield or module.
Pin 10 used here for consistency with other Arduino examples
created 28 Mar 2011
by Limor Fried
modified 24 July 2020
by Tom Igoe
*/
// include the SD library:
#include <SPI.h>
#include <SD.h>
// set up variables using the SD utility library functions:
Sd2Card card;
SdVolume volume;
SdFile root;
// change this to match your SD shield or module;
// Default SPI on Uno and Nano: pin 10
// Arduino Ethernet shield: pin 4
// Adafruit SD shields and modules: pin 10
// Sparkfun SD shield: pin 8
// MKR Zero SD: SDCARD_SS_PIN
const int chipSelect = 10;
void setup() {
// Open serial communications and wait for port to open:
Serial.begin(9600);
while (!Serial) {
; // wait for serial port to connect. Needed for native USB port only
}
Serial.print("\nInitializing SD card...");
// we'll use the initialization code from the utility libraries
// since we're just testing if the card is working!
if (!card.init(SPI_HALF_SPEED, chipSelect)) {
Serial.println("initialization failed. Things to check:");
Serial.println("* is a card inserted?");
Serial.println("* is your wiring correct?");
Serial.println("* did you change the chipSelect pin to match your shield or module?");
Serial.println("Note: press reset button on the board and reopen this Serial Monitor after fixing your issue!");
while (1);
} else {
Serial.println("Wiring is correct and a card is present.");
}
// print the type of card
Serial.println();
Serial.print("Card type: ");
switch (card.type()) {
case SD_CARD_TYPE_SD1:
Serial.println("SD1");
break;
case SD_CARD_TYPE_SD2:
Serial.println("SD2");
break;
case SD_CARD_TYPE_SDHC:
Serial.println("SDHC");
break;
default:
Serial.println("Unknown");
}
// Now we will try to open the 'volume'/'partition' - it should be FAT16 or FAT32
if (!volume.init(card)) {
Serial.println("Could not find FAT16/FAT32 partition.\nMake sure you've formatted the card");
while (1);
}
Serial.print("Clusters: ");
Serial.println(volume.clusterCount());
Serial.print("Blocks x Cluster: ");
Serial.println(volume.blocksPerCluster());
Serial.print("Total Blocks: ");
Serial.println(volume.blocksPerCluster() * volume.clusterCount());
Serial.println();
// print the type and size of the first FAT-type volume
uint32_t volumesize;
Serial.print("Volume type is: FAT");
Serial.println(volume.fatType(), DEC);
volumesize = volume.blocksPerCluster(); // clusters are collections of blocks
volumesize *= volume.clusterCount(); // we'll have a lot of clusters
volumesize /= 2; // SD card blocks are always 512 bytes (2 blocks are 1 KB)
Serial.print("Volume size (KB): ");
Serial.println(volumesize);
Serial.print("Volume size (MB): ");
volumesize /= 1024;
Serial.println(volumesize);
Serial.print("Volume size (GB): ");
Serial.println((float)volumesize / 1024.0);
Serial.println("\nFiles found on the card (name, date and size in bytes): ");
root.openRoot(volume);
// list all files in the card with date and size
root.ls(LS_R | LS_DATE | LS_SIZE);
root.close();
}
void loop(void) {
}

View File

@@ -0,0 +1,79 @@
/*
SD card datalogger
This example shows how to log data from three analog sensors
to an SD card using the SD library. Pin numbers reflect the default
SPI pins for Uno and Nano models
The circuit:
analog sensors on analog pins 0, 1, and 2
SD card attached to SPI bus as follows:
** SDO - pin 11
** SDI - pin 12
** CLK - pin 13
** CS - depends on your SD card shield or module.
Pin 10 used here for consistency with other Arduino examples
(for MKR Zero SD: SDCARD_SS_PIN)
created 24 Nov 2010
modified 24 July 2020
by Tom Igoe
This example code is in the public domain.
*/
#include <SPI.h>
#include <SD.h>
const int chipSelect = 10;
void setup() {
// Open serial communications and wait for port to open:
Serial.begin(9600);
// wait for Serial Monitor to connect. Needed for native USB port boards only:
while (!Serial);
Serial.print("Initializing SD card...");
if (!SD.begin(chipSelect)) {
Serial.println("initialization failed. Things to check:");
Serial.println("1. is a card inserted?");
Serial.println("2. is your wiring correct?");
Serial.println("3. did you change the chipSelect pin to match your shield or module?");
Serial.println("Note: press reset button on the board and reopen this Serial Monitor after fixing your issue!");
while (true);
}
Serial.println("initialization done.");
}
void loop() {
// make a string for assembling the data to log:
String dataString = "";
// read three sensors and append to the string:
for (int analogPin = 0; analogPin < 3; analogPin++) {
int sensor = analogRead(analogPin);
dataString += String(sensor);
if (analogPin < 2) {
dataString += ",";
}
}
// open the file. note that only one file can be open at a time,
// so you have to close this one before opening another.
File dataFile = SD.open("datalog.txt", FILE_WRITE);
// if the file is available, write to it:
if (dataFile) {
dataFile.println(dataString);
dataFile.close();
// print to the serial port too:
Serial.println(dataString);
}
// if the file isn't open, pop up an error:
else {
Serial.println("error opening datalog.txt");
}
}

View File

@@ -0,0 +1,65 @@
/*
SD card file dump
This example shows how to read a file from the SD card using the
SD library and send it over the serial port.
Pin numbers reflect the default SPI pins for Uno and Nano models.
The circuit:
SD card attached to SPI bus as follows:
** SDO - pin 11
** SDI - pin 12
** CLK - pin 13
** CS - depends on your SD card shield or module.
Pin 10 used here for consistency with other Arduino examples
(for MKR Zero SD: SDCARD_SS_PIN)
created 22 December 2010
by Limor Fried
modified 9 Apr 2012
by Tom Igoe
This example code is in the public domain.
*/
#include <SD.h>
const int chipSelect = 10;
void setup() {
// Open serial communications and wait for port to open:
Serial.begin(9600);
// wait for Serial Monitor to connect. Needed for native USB port boards only:
while (!Serial);
Serial.print("Initializing SD card...");
if (!SD.begin(chipSelect)) {
Serial.println("initialization failed. Things to check:");
Serial.println("1. is a card inserted?");
Serial.println("2. is your wiring correct?");
Serial.println("3. did you change the chipSelect pin to match your shield or module?");
Serial.println("Note: press reset button on the board and reopen this Serial Monitor after fixing your issue!");
while (true);
}
Serial.println("initialization done.");
// open the file. note that only one file can be open at a time,
// so you have to close this one before opening another.
File dataFile = SD.open("datalog.txt");
// if the file is available, write to it:
if (dataFile) {
while (dataFile.available()) {
Serial.write(dataFile.read());
}
dataFile.close();
}
// if the file isn't open, pop up an error:
else {
Serial.println("error opening datalog.txt");
}
}
void loop() {
}

View File

@@ -0,0 +1,76 @@
/*
SD card basic file example
This example shows how to create and destroy an SD card file.
The circuit. Pin numbers reflect the default
SPI pins for Uno and Nano models:
SD card attached to SPI bus as follows:
** SDO - pin 11
** SDI - pin 12
** CLK - pin 13
** CS - depends on your SD card shield or module.
Pin 10 used here for consistency with other Arduino examples
(for MKR Zero SD: SDCARD_SS_PIN)
created Nov 2010
by David A. Mellis
modified 24 July 2020
by Tom Igoe
This example code is in the public domain.
*/
#include <SD.h>
const int chipSelect = 10;
File myFile;
void setup() {
// Open serial communications and wait for port to open:
Serial.begin(9600);
// wait for Serial Monitor to connect. Needed for native USB port boards only:
while (!Serial);
Serial.print("Initializing SD card...");
if (!SD.begin(chipSelect)) {
Serial.println("initialization failed. Things to check:");
Serial.println("1. is a card inserted?");
Serial.println("2. is your wiring correct?");
Serial.println("3. did you change the chipSelect pin to match your shield or module?");
Serial.println("Note: press reset button on the board and reopen this serial monitor after fixing your issue!");
while (1);
}
Serial.println("initialization done.");
if (SD.exists("example.txt")) {
Serial.println("example.txt exists.");
} else {
Serial.println("example.txt doesn't exist.");
}
// open a new file and immediately close it:
Serial.println("Creating example.txt...");
myFile = SD.open("example.txt", FILE_WRITE);
myFile.close();
// Check to see if the file exists:
if (SD.exists("example.txt")) {
Serial.println("example.txt exists.");
} else {
Serial.println("example.txt doesn't exist.");
}
// delete the file:
Serial.println("Removing example.txt...");
SD.remove("example.txt");
if (SD.exists("example.txt")) {
Serial.println("example.txt exists.");
} else {
Serial.println("example.txt doesn't exist.");
}
}
void loop() {
// nothing happens after setup finishes.
}

View File

@@ -0,0 +1,118 @@
/*
Non-blocking Write
This example demonstrates how to perform non-blocking writes
to a file on a SD card. The file will contain the current millis()
value every 10ms. If the SD card is busy, the data will be dataBuffered
in order to not block the sketch.
If data is successfully written, the built in LED will flash. After a few
seconds, check the card for a file called datalog.txt
NOTE: myFile.availableForWrite() will automatically sync the
file contents as needed. You may lose some unsynced data
still if myFile.sync() or myFile.close() is not called.
Pin numbers reflect the default SPI pins for Uno and Nano models
Updated for clarity and uniformity with other examples
The circuit:
analog sensors on analog ins 0, 1, and 2
SD card attached to SPI bus as follows:
** SDO - pin 11
** SDI - pin 12
** CLK - pin 13
** CS - depends on your SD card shield or module.
Pin 10 used here for consistency with other Arduino examples
(for MKR Zero SD: SDCARD_SS_PIN)
modified 24 July 2020
by Tom Igoe
This example code is in the public domain.
*/
#include <SD.h>
const int chipSelect = 10;
// file name to use for writing
const char filename[] = "datalog.txt";
// File object to represent file
File myFile;
// string to buffer output
String dataBuffer;
// last time data was written to card:
unsigned long lastMillis = 0;
void setup() {
// Open serial communications and wait for port to open:
Serial.begin(9600);
// reserve 1 kB for String used as a dataBuffer
dataBuffer.reserve(1024);
// set LED pin to output, used to blink when writing
pinMode(LED_BUILTIN, OUTPUT);
// wait for Serial Monitor to connect. Needed for native USB port boards only:
while (!Serial);
Serial.print("Initializing SD card...");
if (!SD.begin(chipSelect)) {
Serial.println("initialization failed. Things to check:");
Serial.println("1. is a card inserted?");
Serial.println("2. is your wiring correct?");
Serial.println("3. did you change the chipSelect pin to match your shield or module?");
Serial.println("Note: press reset button on the board and reopen this Serial Monitor after fixing your issue!");
while (true);
}
Serial.println("initialization done.");
// If you want to start from an empty file,
// uncomment the next line:
// SD.remove(filename);
// try to open the file for writing
myFile = SD.open(filename, FILE_WRITE);
if (!myFile) {
Serial.print("error opening ");
Serial.println(filename);
while (true);
}
// add some new lines to start
myFile.println();
myFile.println("Hello World!");
Serial.println("Starting to write to file...");
}
void loop() {
// check if it's been over 10 ms since the last line added
unsigned long now = millis();
if ((now - lastMillis) >= 10) {
// add a new line to the dataBuffer
dataBuffer += "Hello ";
dataBuffer += now;
dataBuffer += "\r\n";
// print the buffer length. This will change depending on when
// data is actually written to the SD card file:
Serial.print("Unsaved data buffer length (in bytes): ");
Serial.println(dataBuffer.length());
// note the time that the last line was added to the string
lastMillis = now;
}
// check if the SD card is available to write data without blocking
// and if the dataBuffered data is enough for the full chunk size
unsigned int chunkSize = myFile.availableForWrite();
if (chunkSize && dataBuffer.length() >= chunkSize) {
// write to file and blink LED
digitalWrite(LED_BUILTIN, HIGH);
myFile.write(dataBuffer.c_str(), chunkSize);
digitalWrite(LED_BUILTIN, LOW);
// remove written data from dataBuffer
dataBuffer.remove(0, chunkSize);
}
}

View File

@@ -0,0 +1,80 @@
/*
SD card read/write
This example shows how to read and write data to and from an SD card file
The circuit. Pin numbers reflect the default
SPI pins for Uno and Nano models:
SD card attached to SPI bus as follows:
** SDO - pin 11
** SDI - pin 12
** CLK - pin 13
** CS - pin 4 (For For Uno, Nano: pin 10. For MKR Zero SD: SDCARD_SS_PIN)
created Nov 2010
by David A. Mellis
modified 24 July 2020
by Tom Igoe
This example code is in the public domain.
*/
#include <SD.h>
const int chipSelect = 10;
File myFile;
void setup() {
// Open serial communications and wait for port to open:
Serial.begin(9600);
// wait for Serial Monitor to connect. Needed for native USB port boards only:
while (!Serial);
Serial.print("Initializing SD card...");
if (!SD.begin(chipSelect)) {
Serial.println("initialization failed. Things to check:");
Serial.println("1. is a card inserted?");
Serial.println("2. is your wiring correct?");
Serial.println("3. did you change the chipSelect pin to match your shield or module?");
Serial.println("Note: press reset button on the board and reopen this Serial Monitor after fixing your issue!");
while (true);
}
Serial.println("initialization done.");
// open the file. note that only one file can be open at a time,
// so you have to close this one before opening another.
myFile = SD.open("test.txt", FILE_WRITE);
// if the file opened okay, write to it:
if (myFile) {
Serial.print("Writing to test.txt...");
myFile.println("testing 1, 2, 3.");
// close the file:
myFile.close();
Serial.println("done.");
} else {
// if the file didn't open, print an error:
Serial.println("error opening test.txt");
}
// re-open the file for reading:
myFile = SD.open("test.txt");
if (myFile) {
Serial.println("test.txt:");
// read from the file until there's nothing else in it:
while (myFile.available()) {
Serial.write(myFile.read());
}
// close the file:
myFile.close();
} else {
// if the file didn't open, print an error:
Serial.println("error opening test.txt");
}
}
void loop() {
// nothing happens after setup
}

View File

@@ -0,0 +1,86 @@
/*
Listfiles
This example shows how to print out the files in a
directory on a SD card. Pin numbers reflect the default
SPI pins for Uno and Nano models
The circuit:
SD card attached to SPI bus as follows:
** SDO - pin 11
** SDI - pin 12
** CLK - pin 13
** CS - depends on your SD card shield or module.
Pin 10 used here for consistency with other Arduino examples
(for MKR Zero SD: SDCARD_SS_PIN)
created Nov 2010
by David A. Mellis
modified 9 Apr 2012
by Tom Igoe
modified 2 Feb 2014
by Scott Fitzgerald
modified 24 July 2020
by Tom Igoe
This example code is in the public domain.
*/
#include <SD.h>
const int chipSelect = 10;
File root;
void setup() {
// Open serial communications and wait for port to open:
Serial.begin(9600);
// wait for Serial Monitor to connect. Needed for native USB port boards only:
while (!Serial);
Serial.print("Initializing SD card...");
if (!SD.begin(chipSelect)) {
Serial.println("initialization failed. Things to check:");
Serial.println("1. is a card inserted?");
Serial.println("2. is your wiring correct?");
Serial.println("3. did you change the chipSelect pin to match your shield or module?");
Serial.println("Note: press reset button on the board and reopen this Serial Monitor after fixing your issue!");
while (true);
}
Serial.println("initialization done.");
root = SD.open("/");
printDirectory(root, 0);
Serial.println("done!");
}
void loop() {
// nothing happens after setup finishes.
}
void printDirectory(File dir, int numTabs) {
while (true) {
File entry = dir.openNextFile();
if (! entry) {
// no more files
break;
}
for (uint8_t i = 0; i < numTabs; i++) {
Serial.print('\t');
}
Serial.print(entry.name());
if (entry.isDirectory()) {
Serial.println("/");
printDirectory(entry, numTabs + 1);
} else {
// files have sizes, directories do not
Serial.print("\t\t");
Serial.println(entry.size(), DEC);
}
entry.close();
}
}

31
libraries/SD/keywords.txt Normal file
View File

@@ -0,0 +1,31 @@
#######################################
# Syntax Coloring Map SD
#######################################
#######################################
# Datatypes (KEYWORD1)
#######################################
SD KEYWORD1 SD
File KEYWORD1 SD
SDFile KEYWORD1 SD
#######################################
# Methods and Functions (KEYWORD2)
#######################################
begin KEYWORD2
exists KEYWORD2
mkdir KEYWORD2
remove KEYWORD2
rmdir KEYWORD2
open KEYWORD2
close KEYWORD2
seek KEYWORD2
position KEYWORD2
size KEYWORD2
#######################################
# Constants (LITERAL1)
#######################################
FILE_READ LITERAL1
FILE_WRITE LITERAL1

View File

@@ -0,0 +1,9 @@
name=SD
version=1.3.0
author=Arduino, SparkFun
maintainer=Arduino <info@arduino.cc>
sentence=Enables reading and writing on SD cards.
paragraph=Once an SD memory card is connected to the SPI interface of the Arduino board you can create files and read/write on them. You can also move through directories on the SD card.
category=Data Storage
url=http://www.arduino.cc/en/Reference/SD
architectures=*

168
libraries/SD/src/File.cpp Normal file
View File

@@ -0,0 +1,168 @@
/*
SD - a slightly more friendly wrapper for sdfatlib
This library aims to expose a subset of SD card functionality
in the form of a higher level "wrapper" object.
License: GNU General Public License V3
(Because sdfatlib is licensed with this.)
(C) Copyright 2010 SparkFun Electronics
*/
#include <SD.h>
/* for debugging file open/close leaks
uint8_t nfilecount=0;
*/
File::File(SdFile f, const char *n) {
// oh man you are kidding me, new() doesn't exist? Ok we do it by hand!
_file = (SdFile *)malloc(sizeof(SdFile));
if (_file) {
memcpy(_file, &f, sizeof(SdFile));
strncpy(_name, n, 12);
_name[12] = 0;
/* for debugging file open/close leaks
nfilecount++;
Serial.print("Created \"");
Serial.print(n);
Serial.print("\": ");
Serial.println(nfilecount, DEC);
*/
}
}
File::File(void) {
_file = 0;
_name[0] = 0;
//Serial.print("Created empty file object");
}
// returns a pointer to the file name
char *File::name(void) {
return _name;
}
// a directory is a special type of file
bool File::isDirectory(void) {
return (_file && _file->isDir());
}
size_t File::write(uint8_t val) {
return write(&val, 1);
}
size_t File::write(const uint8_t *buf, size_t size) {
size_t t;
if (!_file) {
setWriteError();
return 0;
}
_file->clearWriteError();
t = _file->write(buf, size);
if (_file->getWriteError()) {
setWriteError();
return 0;
}
return t;
}
int File::availableForWrite() {
if (_file) {
return _file->availableForWrite();
}
return 0;
}
int File::peek() {
if (! _file) {
return 0;
}
int c = _file->read();
if (c != -1) {
_file->seekCur(-1);
}
return c;
}
int File::read() {
if (_file) {
return _file->read();
}
return -1;
}
// buffered read for more efficient, high speed reading
int File::read(void *buf, uint16_t nbyte) {
if (_file) {
return _file->read(buf, nbyte);
}
return 0;
}
int File::available() {
if (! _file) {
return 0;
}
uint32_t n = size() - position();
return n > 0X7FFF ? 0X7FFF : n;
}
void File::flush() {
if (_file) {
_file->sync();
}
}
bool File::seek(uint32_t pos) {
if (! _file) {
return false;
}
return _file->seekSet(pos);
}
uint32_t File::position() {
if (! _file) {
return -1;
}
return _file->curPosition();
}
uint32_t File::size() {
if (! _file) {
return 0;
}
return _file->fileSize();
}
void File::close() {
if (_file) {
_file->close();
free(_file);
_file = 0;
/* for debugging file open/close leaks
nfilecount--;
Serial.print("Deleted ");
Serial.println(nfilecount, DEC);
*/
}
}
File::operator bool() {
if (_file) {
return _file->isOpen();
}
return false;
}

View File

@@ -0,0 +1,13 @@
** SD - a slightly more friendly wrapper for sdfatlib **
This library aims to expose a subset of SD card functionality in the
form of a higher level "wrapper" object.
License: GNU General Public License V3
(Because sdfatlib is licensed with this.)
(C) Copyright 2010 SparkFun Electronics
Now better than ever with optimization, multiple file support, directory handling, etc - ladyada!

639
libraries/SD/src/SD.cpp Normal file
View File

@@ -0,0 +1,639 @@
/*
SD - a slightly more friendly wrapper for sdfatlib
This library aims to expose a subset of SD card functionality
in the form of a higher level "wrapper" object.
License: GNU General Public License V3
(Because sdfatlib is licensed with this.)
(C) Copyright 2010 SparkFun Electronics
This library provides four key benefits:
Including `SD.h` automatically creates a global
`SD` object which can be interacted with in a similar
manner to other standard global objects like `Serial` and `Ethernet`.
Boilerplate initialisation code is contained in one method named
`begin` and no further objects need to be created in order to access
the SD card.
Calls to `open` can supply a full path name including parent
directories which simplifies interacting with files in subdirectories.
Utility methods are provided to determine whether a file exists
and to create a directory hierarchy.
Note however that not all functionality provided by the underlying
sdfatlib library is exposed.
*/
/*
Implementation Notes
In order to handle multi-directory path traversal, functionality that
requires this ability is implemented as callback functions.
Individual methods call the `walkPath` function which performs the actual
directory traversal (swapping between two different directory/file handles
along the way) and at each level calls the supplied callback function.
Some types of functionality will take an action at each level (e.g. exists
or make directory) which others will only take an action at the bottom
level (e.g. open).
*/
#include "SD.h"
namespace SDLib {
// Used by `getNextPathComponent`
#define MAX_COMPONENT_LEN 12
#define PATH_COMPONENT_BUFFER_LEN (MAX_COMPONENT_LEN + 1)
// BASENAME:char(8) + '.':char(1) + EXT:char(3) = 12 (a.k.a short 8.3 name)
// And an extra space for '\0' for path buffer
bool getNextPathComponent(const char *path, unsigned int *p_offset,
char *buffer) {
/*
Parse individual path components from a path.
e.g. after repeated calls '/foo/bar/baz' will be split
into 'foo', 'bar', 'baz'.
This is similar to `strtok()` but copies the component into the
supplied buffer rather than modifying the original string.
`buffer` needs to be PATH_COMPONENT_BUFFER_LEN in size.
`p_offset` needs to point to an integer of the offset at
which the previous path component finished.
Returns `true` if more components remain.
Returns `false` if this is the last component.
(This means path ended with 'foo' or 'foo/'.)
*/
// TODO: Have buffer local to this function, so we know it's the
// correct length?
int bufferOffset = 0;
int offset = *p_offset;
// Skip root or other separator
if (path[offset] == '/') {
offset++;
}
// Copy the next next path segment
while (bufferOffset < MAX_COMPONENT_LEN
&& (path[offset] != '/')
&& (path[offset] != '\0')) {
buffer[bufferOffset++] = path[offset++];
}
buffer[bufferOffset] = '\0';
// Skip trailing separator so we can determine if this
// is the last component in the path or not.
if (path[offset] == '/') {
offset++;
}
*p_offset = offset;
return (path[offset] != '\0');
}
bool walkPath(const char *filepath, SdFile& parentDir,
bool(*callback)(SdFile& parentDir,
const char *filePathComponent,
bool isLastComponent,
void *object),
void *object = NULL) {
/*
When given a file path (and parent directory--normally root),
this function traverses the directories in the path and at each
level calls the supplied callback function while also providing
the supplied object for context if required.
e.g. given the path '/foo/bar/baz'
the callback would be called at the equivalent of
'/foo', '/foo/bar' and '/foo/bar/baz'.
The implementation swaps between two different directory/file
handles as it traverses the directories and does not use recursion
in an attempt to use memory efficiently.
If a callback wishes to stop the directory traversal it should
return false--in this case the function will stop the traversal,
tidy up and return false.
If a directory path doesn't exist at some point this function will
also return false and not subsequently call the callback.
If a directory path specified is complete, valid and the callback
did not indicate the traversal should be interrupted then this
function will return true.
*/
SdFile subfile1;
SdFile subfile2;
char buffer[PATH_COMPONENT_BUFFER_LEN];
unsigned int offset = 0;
SdFile *p_parent;
SdFile *p_child;
SdFile *p_tmp_sdfile;
p_child = &subfile1;
p_parent = &parentDir;
while (true) {
bool moreComponents = getNextPathComponent(filepath, &offset, buffer);
bool shouldContinue = callback((*p_parent), buffer, !moreComponents, object);
if (!shouldContinue) {
// TODO: Don't repeat this code?
// If it's one we've created then we
// don't need the parent handle anymore.
if (p_parent != &parentDir) {
(*p_parent).close();
}
return false;
}
if (!moreComponents) {
break;
}
bool exists = (*p_child).open(*p_parent, buffer, O_RDONLY);
// If it's one we've created then we
// don't need the parent handle anymore.
if (p_parent != &parentDir) {
(*p_parent).close();
}
// Handle case when it doesn't exist and we can't continue...
if (exists) {
// We alternate between two file handles as we go down
// the path.
if (p_parent == &parentDir) {
p_parent = &subfile2;
}
p_tmp_sdfile = p_parent;
p_parent = p_child;
p_child = p_tmp_sdfile;
} else {
return false;
}
}
if (p_parent != &parentDir) {
(*p_parent).close(); // TODO: Return/ handle different?
}
return true;
}
/*
The callbacks used to implement various functionality follow.
Each callback is supplied with a parent directory handle,
character string with the name of the current file path component,
a flag indicating if this component is the last in the path and
a pointer to an arbitrary object used for context.
*/
bool callback_pathExists(SdFile& parentDir, const char *filePathComponent,
bool /* isLastComponent */, void * /* object */) {
/*
Callback used to determine if a file/directory exists in parent
directory.
Returns true if file path exists.
*/
SdFile child;
bool exists = child.open(parentDir, filePathComponent, O_RDONLY);
if (exists) {
child.close();
}
return exists;
}
bool callback_makeDirPath(SdFile& parentDir, const char *filePathComponent,
bool isLastComponent, void *object) {
/*
Callback used to create a directory in the parent directory if
it does not already exist.
Returns true if a directory was created or it already existed.
*/
bool result = false;
SdFile child;
result = callback_pathExists(parentDir, filePathComponent, isLastComponent, object);
if (!result) {
result = child.makeDir(parentDir, filePathComponent);
}
return result;
}
/*
bool callback_openPath(SdFile& parentDir, char *filePathComponent,
bool isLastComponent, void *object) {
Callback used to open a file specified by a filepath that may
specify one or more directories above it.
Expects the context object to be an instance of `SDClass` and
will use the `file` property of the instance to open the requested
file/directory with the associated file open mode property.
Always returns true if the directory traversal hasn't reached the
bottom of the directory hierarchy.
Returns false once the file has been opened--to prevent the traversal
from descending further. (This may be unnecessary.)
if (isLastComponent) {
SDClass *p_SD = static_cast<SDClass*>(object);
p_SD->file.open(parentDir, filePathComponent, p_SD->fileOpenMode);
if (p_SD->fileOpenMode == FILE_WRITE) {
p_SD->file.seekSet(p_SD->file.fileSize());
}
// TODO: Return file open result?
return false;
}
return true;
}
*/
bool callback_remove(SdFile& parentDir, const char *filePathComponent,
bool isLastComponent, void * /* object */) {
if (isLastComponent) {
return SdFile::remove(parentDir, filePathComponent);
}
return true;
}
bool callback_rmdir(SdFile& parentDir, const char *filePathComponent,
bool isLastComponent, void * /* object */) {
if (isLastComponent) {
SdFile f;
if (!f.open(parentDir, filePathComponent, O_READ)) {
return false;
}
return f.rmDir();
}
return true;
}
/* Implementation of class used to create `SDCard` object. */
bool SDClass::begin(uint8_t csPin) {
if (root.isOpen()) {
root.close();
}
/*
Performs the initialisation required by the sdfatlib library.
Return true if initialization succeeds, false otherwise.
*/
return card.init(SPI_HALF_SPEED, csPin) &&
volume.init(card) &&
root.openRoot(volume);
}
bool SDClass::begin(uint32_t clock, uint8_t csPin) {
if (root.isOpen()) {
root.close();
}
return card.init(SPI_HALF_SPEED, csPin) &&
card.setSpiClock(clock) &&
volume.init(card) &&
root.openRoot(volume);
}
//call this when a card is removed. It will allow you to insert and initialise a new card.
void SDClass::end() {
root.close();
}
// this little helper is used to traverse paths
SdFile SDClass::getParentDir(const char *filepath, int *index) {
// get parent directory
SdFile d1;
SdFile d2;
d1.openRoot(volume); // start with the mostparent, root!
// we'll use the pointers to swap between the two objects
SdFile *parent = &d1;
SdFile *subdir = &d2;
const char *origpath = filepath;
while (strchr(filepath, '/')) {
// get rid of leading /'s
if (filepath[0] == '/') {
filepath++;
continue;
}
if (! strchr(filepath, '/')) {
// it was in the root directory, so leave now
break;
}
// extract just the name of the next subdirectory
uint8_t idx = strchr(filepath, '/') - filepath;
if (idx > 12) {
idx = 12; // don't let them specify long names
}
char subdirname[13];
strncpy(subdirname, filepath, idx);
subdirname[idx] = 0;
// close the subdir (we reuse them) if open
subdir->close();
if (! subdir->open(parent, subdirname, O_READ)) {
// failed to open one of the subdirectories
return SdFile();
}
// move forward to the next subdirectory
filepath += idx;
// we reuse the objects, close it.
parent->close();
// swap the pointers
SdFile *t = parent;
parent = subdir;
subdir = t;
}
*index = (int)(filepath - origpath);
// parent is now the parent directory of the file!
return *parent;
}
File SDClass::open(const char *filepath, uint8_t mode) {
/*
Open the supplied file path for reading or writing.
The file content can be accessed via the `file` property of
the `SDClass` object--this property is currently
a standard `SdFile` object from `sdfatlib`.
Defaults to read only.
If `write` is true, default action (when `append` is true) is to
append data to the end of the file.
If `append` is false then the file will be truncated first.
If the file does not exist and it is opened for writing the file
will be created.
An attempt to open a file for reading that does not exist is an
error.
*/
int pathidx = 0;
// do the interactive search
SdFile parentdir = getParentDir(filepath, &pathidx);
// no more subdirs!
filepath += pathidx;
if (! filepath[0]) {
// it was the directory itself!
return File(parentdir, "/");
}
// Open the file itself
SdFile file;
// failed to open a subdir!
if (!parentdir.isOpen()) {
return File();
}
if (! file.open(parentdir, filepath, mode)) {
return File();
}
// close the parent
parentdir.close();
if ((mode & (O_APPEND | O_WRITE)) == (O_APPEND | O_WRITE)) {
file.seekSet(file.fileSize());
}
return File(file, filepath);
}
/*
File SDClass::open(char *filepath, uint8_t mode) {
//
Open the supplied file path for reading or writing.
The file content can be accessed via the `file` property of
the `SDClass` object--this property is currently
a standard `SdFile` object from `sdfatlib`.
Defaults to read only.
If `write` is true, default action (when `append` is true) is to
append data to the end of the file.
If `append` is false then the file will be truncated first.
If the file does not exist and it is opened for writing the file
will be created.
An attempt to open a file for reading that does not exist is an
error.
//
// TODO: Allow for read&write? (Possibly not, as it requires seek.)
fileOpenMode = mode;
walkPath(filepath, root, callback_openPath, this);
return File();
}
*/
//bool SDClass::close() {
// /*
//
// Closes the file opened by the `open` method.
//
// */
// file.close();
//}
bool SDClass::exists(const char *filepath) {
/*
Returns true if the supplied file path exists.
*/
return walkPath(filepath, root, callback_pathExists);
}
//bool SDClass::exists(char *filepath, SdFile& parentDir) {
// /*
//
// Returns true if the supplied file path rooted at `parentDir`
// exists.
//
// */
// return walkPath(filepath, parentDir, callback_pathExists);
//}
bool SDClass::mkdir(const char *filepath) {
/*
Makes a single directory or a hierarchy of directories.
A rough equivalent to `mkdir -p`.
*/
return walkPath(filepath, root, callback_makeDirPath);
}
bool SDClass::rmdir(const char *filepath) {
/*
Remove a single directory or a hierarchy of directories.
A rough equivalent to `rm -rf`.
*/
return walkPath(filepath, root, callback_rmdir);
}
bool SDClass::remove(const char *filepath) {
return walkPath(filepath, root, callback_remove);
}
// allows you to recurse into a directory
File File::openNextFile(uint8_t mode) {
dir_t p;
//Serial.print("\t\treading dir...");
while (_file->readDir(&p) > 0) {
// done if past last used entry
if (p.name[0] == DIR_NAME_FREE) {
//Serial.println("end");
return File();
}
// skip deleted entry and entries for . and ..
if (p.name[0] == DIR_NAME_DELETED || p.name[0] == '.') {
//Serial.println("dots");
continue;
}
// only list subdirectories and files
if (!DIR_IS_FILE_OR_SUBDIR(&p)) {
//Serial.println("notafile");
continue;
}
// print file name with possible blank fill
SdFile f;
char name[13];
_file->dirName(p, name);
//Serial.print("try to open file ");
//Serial.println(name);
if (f.open(_file, name, mode)) {
//Serial.println("OK!");
return File(f, name);
} else {
//Serial.println("ugh");
return File();
}
}
//Serial.println("nothing");
return File();
}
void File::rewindDirectory(void) {
if (isDirectory()) {
_file->rewind();
}
}
SDClass SD;
};

138
libraries/SD/src/SD.h Normal file
View File

@@ -0,0 +1,138 @@
/*
SD - a slightly more friendly wrapper for sdfatlib
This library aims to expose a subset of SD card functionality
in the form of a higher level "wrapper" object.
License: GNU General Public License V3
(Because sdfatlib is licensed with this.)
(C) Copyright 2010 SparkFun Electronics
*/
#ifndef __SD_H__
#define __SD_H__
#include <Arduino.h>
#include "utility/SdFat.h"
#include "utility/SdFatUtil.h"
#define FILE_READ O_READ
#define FILE_WRITE (O_READ | O_WRITE | O_CREAT | O_APPEND)
namespace SDLib {
class File : public Stream {
private:
char _name[13]; // our name
SdFile *_file; // underlying file pointer
public:
File(SdFile f, const char *name); // wraps an underlying SdFile
File(void); // 'empty' constructor
virtual size_t write(uint8_t);
virtual size_t write(const uint8_t *buf, size_t size);
virtual int availableForWrite();
virtual int read();
virtual int peek();
virtual int available();
virtual void flush();
int read(void *buf, uint16_t nbyte);
bool seek(uint32_t pos);
uint32_t position();
uint32_t size();
void close();
operator bool();
char * name();
bool isDirectory(void);
File openNextFile(uint8_t mode = O_RDONLY);
void rewindDirectory(void);
using Print::write;
};
class SDClass {
private:
// These are required for initialisation and use of sdfatlib
Sd2Card card;
SdVolume volume;
SdFile root;
// my quick&dirty iterator, should be replaced
SdFile getParentDir(const char *filepath, int *indx);
public:
// This needs to be called to set up the connection to the SD card
// before other methods are used.
bool begin(uint8_t csPin = SD_CHIP_SELECT_PIN);
bool begin(uint32_t clock, uint8_t csPin);
//call this when a card is removed. It will allow you to insert and initialise a new card.
void end();
// Open the specified file/directory with the supplied mode (e.g. read or
// write, etc). Returns a File object for interacting with the file.
// Note that currently only one file can be open at a time.
File open(const char *filename, uint8_t mode = FILE_READ);
File open(const String &filename, uint8_t mode = FILE_READ) {
return open(filename.c_str(), mode);
}
// Methods to determine if the requested file path exists.
bool exists(const char *filepath);
bool exists(const String &filepath) {
return exists(filepath.c_str());
}
// Create the requested directory heirarchy--if intermediate directories
// do not exist they will be created.
bool mkdir(const char *filepath);
bool mkdir(const String &filepath) {
return mkdir(filepath.c_str());
}
// Delete the file.
bool remove(const char *filepath);
bool remove(const String &filepath) {
return remove(filepath.c_str());
}
bool rmdir(const char *filepath);
bool rmdir(const String &filepath) {
return rmdir(filepath.c_str());
}
private:
// This is used to determine the mode used to open a file
// it's here because it's the easiest place to pass the
// information through the directory walking function. But
// it's probably not the best place for it.
// It shouldn't be set directly--it is set via the parameters to `open`.
int fileOpenMode;
friend class File;
friend bool callback_openPath(SdFile&, const char *, bool, void *);
};
extern SDClass SD;
};
// We enclose File and SD classes in namespace SDLib to avoid conflicts
// with others legacy libraries that redefines File class.
// This ensure compatibility with sketches that uses only SD library
using namespace SDLib;
// This allows sketches to use SDLib::File with other libraries (in the
// sketch you must use SDFile instead of File to disambiguate)
typedef SDLib::File SDFile;
typedef SDLib::SDClass SDFileSystemClass;
#define SDFileSystem SDLib::SD
#endif

View File

@@ -0,0 +1,418 @@
/* Arduino SdFat Library
Copyright (C) 2009 by William Greiman
This file is part of the Arduino SdFat Library
This Library is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with the Arduino SdFat Library. If not, see
<http://www.gnu.org/licenses/>.
*/
#ifndef FatStructs_h
#define FatStructs_h
/**
\file
FAT file structures
*/
/*
mostly from Microsoft document fatgen103.doc
http://www.microsoft.com/whdc/system/platform/firmware/fatgen.mspx
*/
//------------------------------------------------------------------------------
/** Value for byte 510 of boot block or MBR */
uint8_t const BOOTSIG0 = 0X55;
/** Value for byte 511 of boot block or MBR */
uint8_t const BOOTSIG1 = 0XAA;
//------------------------------------------------------------------------------
/**
\struct partitionTable
\brief MBR partition table entry
A partition table entry for a MBR formatted storage device.
The MBR partition table has four entries.
*/
struct partitionTable {
/**
Boot Indicator . Indicates whether the volume is the active
partition. Legal values include: 0X00. Do not use for booting.
0X80 Active partition.
*/
uint8_t boot;
/**
Head part of Cylinder-head-sector address of the first block in
the partition. Legal values are 0-255. Only used in old PC BIOS.
*/
uint8_t beginHead;
/**
Sector part of Cylinder-head-sector address of the first block in
the partition. Legal values are 1-63. Only used in old PC BIOS.
*/
unsigned beginSector : 6;
/** High bits cylinder for first block in partition. */
unsigned beginCylinderHigh : 2;
/**
Combine beginCylinderLow with beginCylinderHigh. Legal values
are 0-1023. Only used in old PC BIOS.
*/
uint8_t beginCylinderLow;
/**
Partition type. See defines that begin with PART_TYPE_ for
some Microsoft partition types.
*/
uint8_t type;
/**
head part of cylinder-head-sector address of the last sector in the
partition. Legal values are 0-255. Only used in old PC BIOS.
*/
uint8_t endHead;
/**
Sector part of cylinder-head-sector address of the last sector in
the partition. Legal values are 1-63. Only used in old PC BIOS.
*/
unsigned endSector : 6;
/** High bits of end cylinder */
unsigned endCylinderHigh : 2;
/**
Combine endCylinderLow with endCylinderHigh. Legal values
are 0-1023. Only used in old PC BIOS.
*/
uint8_t endCylinderLow;
/** Logical block address of the first block in the partition. */
uint32_t firstSector;
/** Length of the partition, in blocks. */
uint32_t totalSectors;
} __attribute__((packed));
/** Type name for partitionTable */
typedef struct partitionTable part_t;
//------------------------------------------------------------------------------
/**
\struct masterBootRecord
\brief Master Boot Record
The first block of a storage device that is formatted with a MBR.
*/
struct masterBootRecord {
/** Code Area for master boot program. */
uint8_t codeArea[440];
/** Optional WindowsNT disk signature. May contain more boot code. */
uint32_t diskSignature;
/** Usually zero but may be more boot code. */
uint16_t usuallyZero;
/** Partition tables. */
part_t part[4];
/** First MBR signature byte. Must be 0X55 */
uint8_t mbrSig0;
/** Second MBR signature byte. Must be 0XAA */
uint8_t mbrSig1;
} __attribute__((packed));
/** Type name for masterBootRecord */
typedef struct masterBootRecord mbr_t;
//------------------------------------------------------------------------------
/**
\struct biosParmBlock
\brief BIOS parameter block
The BIOS parameter block describes the physical layout of a FAT volume.
*/
struct biosParmBlock {
/**
Count of bytes per sector. This value may take on only the
following values: 512, 1024, 2048 or 4096
*/
uint16_t bytesPerSector;
/**
Number of sectors per allocation unit. This value must be a
power of 2 that is greater than 0. The legal values are
1, 2, 4, 8, 16, 32, 64, and 128.
*/
uint8_t sectorsPerCluster;
/**
Number of sectors before the first FAT.
This value must not be zero.
*/
uint16_t reservedSectorCount;
/** The count of FAT data structures on the volume. This field should
always contain the value 2 for any FAT volume of any type.
*/
uint8_t fatCount;
/**
For FAT12 and FAT16 volumes, this field contains the count of
32-byte directory entries in the root directory. For FAT32 volumes,
this field must be set to 0. For FAT12 and FAT16 volumes, this
value should always specify a count that when multiplied by 32
results in a multiple of bytesPerSector. FAT16 volumes should
use the value 512.
*/
uint16_t rootDirEntryCount;
/**
This field is the old 16-bit total count of sectors on the volume.
This count includes the count of all sectors in all four regions
of the volume. This field can be 0; if it is 0, then totalSectors32
must be non-zero. For FAT32 volumes, this field must be 0. For
FAT12 and FAT16 volumes, this field contains the sector count, and
totalSectors32 is 0 if the total sector count fits
(is less than 0x10000).
*/
uint16_t totalSectors16;
/**
This dates back to the old MS-DOS 1.x media determination and is
no longer usually used for anything. 0xF8 is the standard value
for fixed (non-removable) media. For removable media, 0xF0 is
frequently used. Legal values are 0xF0 or 0xF8-0xFF.
*/
uint8_t mediaType;
/**
Count of sectors occupied by one FAT on FAT12/FAT16 volumes.
On FAT32 volumes this field must be 0, and sectorsPerFat32
contains the FAT size count.
*/
uint16_t sectorsPerFat16;
/** Sectors per track for interrupt 0x13. Not used otherwise. */
uint16_t sectorsPerTrtack;
/** Number of heads for interrupt 0x13. Not used otherwise. */
uint16_t headCount;
/**
Count of hidden sectors preceding the partition that contains this
FAT volume. This field is generally only relevant for media
visible on interrupt 0x13.
*/
uint32_t hidddenSectors;
/**
This field is the new 32-bit total count of sectors on the volume.
This count includes the count of all sectors in all four regions
of the volume. This field can be 0; if it is 0, then
totalSectors16 must be non-zero.
*/
uint32_t totalSectors32;
/**
Count of sectors occupied by one FAT on FAT32 volumes.
*/
uint32_t sectorsPerFat32;
/**
This field is only defined for FAT32 media and does not exist on
FAT12 and FAT16 media.
Bits 0-3 -- Zero-based number of active FAT.
Only valid if mirroring is disabled.
Bits 4-6 -- Reserved.
Bit 7 -- 0 means the FAT is mirrored at runtime into all FATs.
-- 1 means only one FAT is active; it is the one referenced in bits 0-3.
Bits 8-15 -- Reserved.
*/
uint16_t fat32Flags;
/**
FAT32 version. High byte is major revision number.
Low byte is minor revision number. Only 0.0 define.
*/
uint16_t fat32Version;
/**
Cluster number of the first cluster of the root directory for FAT32.
This usually 2 but not required to be 2.
*/
uint32_t fat32RootCluster;
/**
Sector number of FSINFO structure in the reserved area of the
FAT32 volume. Usually 1.
*/
uint16_t fat32FSInfo;
/**
If non-zero, indicates the sector number in the reserved area
of the volume of a copy of the boot record. Usually 6.
No value other than 6 is recommended.
*/
uint16_t fat32BackBootBlock;
/**
Reserved for future expansion. Code that formats FAT32 volumes
should always set all of the bytes of this field to 0.
*/
uint8_t fat32Reserved[12];
} __attribute__((packed));
/** Type name for biosParmBlock */
typedef struct biosParmBlock bpb_t;
//------------------------------------------------------------------------------
/**
\struct fat32BootSector
\brief Boot sector for a FAT16 or FAT32 volume.
*/
struct fat32BootSector {
/** X86 jmp to boot program */
uint8_t jmpToBootCode[3];
/** informational only - don't depend on it */
char oemName[8];
/** BIOS Parameter Block */
bpb_t bpb;
/** for int0x13 use value 0X80 for hard drive */
uint8_t driveNumber;
/** used by Windows NT - should be zero for FAT */
uint8_t reserved1;
/** 0X29 if next three fields are valid */
uint8_t bootSignature;
/** usually generated by combining date and time */
uint32_t volumeSerialNumber;
/** should match volume label in root dir */
char volumeLabel[11];
/** informational only - don't depend on it */
char fileSystemType[8];
/** X86 boot code */
uint8_t bootCode[420];
/** must be 0X55 */
uint8_t bootSectorSig0;
/** must be 0XAA */
uint8_t bootSectorSig1;
} __attribute__((packed));
//------------------------------------------------------------------------------
// End Of Chain values for FAT entries
/** FAT16 end of chain value used by Microsoft. */
uint16_t const FAT16EOC = 0XFFFF;
/** Minimum value for FAT16 EOC. Use to test for EOC. */
uint16_t const FAT16EOC_MIN = 0XFFF8;
/** FAT32 end of chain value used by Microsoft. */
uint32_t const FAT32EOC = 0X0FFFFFFF;
/** Minimum value for FAT32 EOC. Use to test for EOC. */
uint32_t const FAT32EOC_MIN = 0X0FFFFFF8;
/** Mask a for FAT32 entry. Entries are 28 bits. */
uint32_t const FAT32MASK = 0X0FFFFFFF;
/** Type name for fat32BootSector */
typedef struct fat32BootSector fbs_t;
//------------------------------------------------------------------------------
/**
\struct directoryEntry
\brief FAT short directory entry
Short means short 8.3 name, not the entry size.
Date Format. A FAT directory entry date stamp is a 16-bit field that is
basically a date relative to the MS-DOS epoch of 01/01/1980. Here is the
format (bit 0 is the LSB of the 16-bit word, bit 15 is the MSB of the
16-bit word):
Bits 9-15: Count of years from 1980, valid value range 0-127
inclusive (1980-2107).
Bits 5-8: Month of year, 1 = January, valid value range 1-12 inclusive.
Bits 0-4: Day of month, valid value range 1-31 inclusive.
Time Format. A FAT directory entry time stamp is a 16-bit field that has
a granularity of 2 seconds. Here is the format (bit 0 is the LSB of the
16-bit word, bit 15 is the MSB of the 16-bit word).
Bits 11-15: Hours, valid value range 0-23 inclusive.
Bits 5-10: Minutes, valid value range 0-59 inclusive.
Bits 0-4: 2-second count, valid value range 0-29 inclusive (0 - 58 seconds).
The valid time range is from Midnight 00:00:00 to 23:59:58.
*/
struct directoryEntry {
/**
Short 8.3 name.
The first eight bytes contain the file name with blank fill.
The last three bytes contain the file extension with blank fill.
*/
uint8_t name[11];
/** Entry attributes.
The upper two bits of the attribute byte are reserved and should
always be set to 0 when a file is created and never modified or
looked at after that. See defines that begin with DIR_ATT_.
*/
uint8_t attributes;
/**
Reserved for use by Windows NT. Set value to 0 when a file is
created and never modify or look at it after that.
*/
uint8_t reservedNT;
/**
The granularity of the seconds part of creationTime is 2 seconds
so this field is a count of tenths of a second and its valid
value range is 0-199 inclusive. (WHG note - seems to be hundredths)
*/
uint8_t creationTimeTenths;
/** Time file was created. */
uint16_t creationTime;
/** Date file was created. */
uint16_t creationDate;
/**
Last access date. Note that there is no last access time, only
a date. This is the date of last read or write. In the case of
a write, this should be set to the same date as lastWriteDate.
*/
uint16_t lastAccessDate;
/**
High word of this entry's first cluster number (always 0 for a
FAT12 or FAT16 volume).
*/
uint16_t firstClusterHigh;
/** Time of last write. File creation is considered a write. */
uint16_t lastWriteTime;
/** Date of last write. File creation is considered a write. */
uint16_t lastWriteDate;
/** Low word of this entry's first cluster number. */
uint16_t firstClusterLow;
/** 32-bit unsigned holding this file's size in bytes. */
uint32_t fileSize;
} __attribute__((packed));
//------------------------------------------------------------------------------
// Definitions for directory entries
//
/** Type name for directoryEntry */
typedef struct directoryEntry dir_t;
/** escape for name[0] = 0XE5 */
uint8_t const DIR_NAME_0XE5 = 0X05;
/** name[0] value for entry that is free after being "deleted" */
uint8_t const DIR_NAME_DELETED = 0XE5;
/** name[0] value for entry that is free and no allocated entries follow */
uint8_t const DIR_NAME_FREE = 0X00;
/** file is read-only */
uint8_t const DIR_ATT_READ_ONLY = 0X01;
/** File should hidden in directory listings */
uint8_t const DIR_ATT_HIDDEN = 0X02;
/** Entry is for a system file */
uint8_t const DIR_ATT_SYSTEM = 0X04;
/** Directory entry contains the volume label */
uint8_t const DIR_ATT_VOLUME_ID = 0X08;
/** Entry is for a directory */
uint8_t const DIR_ATT_DIRECTORY = 0X10;
/** Old DOS archive bit for backup support */
uint8_t const DIR_ATT_ARCHIVE = 0X20;
/** Test value for long name entry. Test is
(d->attributes & DIR_ATT_LONG_NAME_MASK) == DIR_ATT_LONG_NAME. */
uint8_t const DIR_ATT_LONG_NAME = 0X0F;
/** Test mask for long name entry */
uint8_t const DIR_ATT_LONG_NAME_MASK = 0X3F;
/** defined attribute bits */
uint8_t const DIR_ATT_DEFINED_BITS = 0X3F;
/** Directory entry is part of a long name */
static inline uint8_t DIR_IS_LONG_NAME(const dir_t* dir) {
return (dir->attributes & DIR_ATT_LONG_NAME_MASK) == DIR_ATT_LONG_NAME;
}
/** Mask for file/subdirectory tests */
uint8_t const DIR_ATT_FILE_TYPE_MASK = (DIR_ATT_VOLUME_ID | DIR_ATT_DIRECTORY);
/** Directory entry is for a file */
static inline uint8_t DIR_IS_FILE(const dir_t* dir) {
return (dir->attributes & DIR_ATT_FILE_TYPE_MASK) == 0;
}
/** Directory entry is for a subdirectory */
static inline uint8_t DIR_IS_SUBDIR(const dir_t* dir) {
return (dir->attributes & DIR_ATT_FILE_TYPE_MASK) == DIR_ATT_DIRECTORY;
}
/** Directory entry is for a file or subdirectory */
static inline uint8_t DIR_IS_FILE_OR_SUBDIR(const dir_t* dir) {
return (dir->attributes & DIR_ATT_VOLUME_ID) == 0;
}
#endif // FatStructs_h

View File

@@ -0,0 +1,777 @@
/* Arduino Sd2Card Library
Copyright (C) 2009 by William Greiman
This file is part of the Arduino Sd2Card Library
This Library is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with the Arduino Sd2Card Library. If not, see
<http://www.gnu.org/licenses/>.
*/
#define USE_SPI_LIB
#include <Arduino.h>
#include "Sd2Card.h"
//------------------------------------------------------------------------------
#ifndef SOFTWARE_SPI
#ifdef USE_SPI_LIB
#ifndef SDCARD_SPI
#define SDCARD_SPI SPI
#endif
#include <SPI.h>
static SPISettings settings;
#endif
// functions for hardware SPI
/** Send a byte to the card */
static void spiSend(uint8_t b) {
#ifndef USE_SPI_LIB
SPDR = b;
while (!(SPSR & (1 << SPIF)))
;
#else
SDCARD_SPI.transfer(b);
#endif
}
/** Receive a byte from the card */
static uint8_t spiRec(void) {
#ifndef USE_SPI_LIB
spiSend(0XFF);
return SPDR;
#else
return SDCARD_SPI.transfer(0xFF);
#endif
}
#else // SOFTWARE_SPI
//------------------------------------------------------------------------------
/** nop to tune soft SPI timing */
#define nop asm volatile ("nop\n\t")
//------------------------------------------------------------------------------
/** Soft SPI receive */
uint8_t spiRec(void) {
uint8_t data = 0;
// no interrupts during byte receive - about 8 us
cli();
// output pin high - like sending 0XFF
fastDigitalWrite(SPI_MOSI_PIN, HIGH);
for (uint8_t i = 0; i < 8; i++) {
fastDigitalWrite(SPI_SCK_PIN, HIGH);
// adjust so SCK is nice
nop;
nop;
data <<= 1;
if (fastDigitalRead(SPI_MISO_PIN)) {
data |= 1;
}
fastDigitalWrite(SPI_SCK_PIN, LOW);
}
// enable interrupts
sei();
return data;
}
//------------------------------------------------------------------------------
/** Soft SPI send */
void spiSend(uint8_t data) {
// no interrupts during byte send - about 8 us
cli();
for (uint8_t i = 0; i < 8; i++) {
fastDigitalWrite(SPI_SCK_PIN, LOW);
fastDigitalWrite(SPI_MOSI_PIN, data & 0X80);
data <<= 1;
fastDigitalWrite(SPI_SCK_PIN, HIGH);
}
// hold SCK high for a few ns
nop;
nop;
nop;
nop;
fastDigitalWrite(SPI_SCK_PIN, LOW);
// enable interrupts
sei();
}
#endif // SOFTWARE_SPI
//------------------------------------------------------------------------------
// send command and return error code. Return zero for OK
uint8_t Sd2Card::cardCommand(uint8_t cmd, uint32_t arg) {
// end read if in partialBlockRead mode
readEnd();
// select card
chipSelectLow();
// wait up to 300 ms if busy
waitNotBusy(300);
// send command
spiSend(cmd | 0x40);
// send argument
for (int8_t s = 24; s >= 0; s -= 8) {
spiSend(arg >> s);
}
// send CRC
uint8_t crc = 0XFF;
if (cmd == CMD0) {
crc = 0X95; // correct crc for CMD0 with arg 0
}
if (cmd == CMD8) {
crc = 0X87; // correct crc for CMD8 with arg 0X1AA
}
spiSend(crc);
// wait for response
for (uint8_t i = 0; ((status_ = spiRec()) & 0X80) && i != 0XFF; i++)
;
return status_;
}
//------------------------------------------------------------------------------
/**
Determine the size of an SD flash memory card.
\return The number of 512 byte data blocks in the card
or zero if an error occurs.
*/
uint32_t Sd2Card::cardSize(void) {
csd_t csd;
if (!readCSD(&csd)) {
return 0;
}
if (csd.v1.csd_ver == 0) {
uint8_t read_bl_len = csd.v1.read_bl_len;
uint16_t c_size = (csd.v1.c_size_high << 10)
| (csd.v1.c_size_mid << 2) | csd.v1.c_size_low;
uint8_t c_size_mult = (csd.v1.c_size_mult_high << 1)
| csd.v1.c_size_mult_low;
return (uint32_t)(c_size + 1) << (c_size_mult + read_bl_len - 7);
} else if (csd.v2.csd_ver == 1) {
uint32_t c_size = ((uint32_t)csd.v2.c_size_high << 16)
| (csd.v2.c_size_mid << 8) | csd.v2.c_size_low;
return (c_size + 1) << 10;
} else {
error(SD_CARD_ERROR_BAD_CSD);
return 0;
}
}
//------------------------------------------------------------------------------
static uint8_t chip_select_asserted = 0;
void Sd2Card::chipSelectHigh(void) {
digitalWrite(chipSelectPin_, HIGH);
#ifdef USE_SPI_LIB
if (chip_select_asserted) {
chip_select_asserted = 0;
SDCARD_SPI.endTransaction();
}
#endif
}
//------------------------------------------------------------------------------
void Sd2Card::chipSelectLow(void) {
#ifdef USE_SPI_LIB
if (!chip_select_asserted) {
chip_select_asserted = 1;
SDCARD_SPI.beginTransaction(settings);
}
#endif
digitalWrite(chipSelectPin_, LOW);
}
//------------------------------------------------------------------------------
/** Erase a range of blocks.
\param[in] firstBlock The address of the first block in the range.
\param[in] lastBlock The address of the last block in the range.
\note This function requests the SD card to do a flash erase for a
range of blocks. The data on the card after an erase operation is
either 0 or 1, depends on the card vendor. The card must support
single block erase.
\return The value one, true, is returned for success and
the value zero, false, is returned for failure.
*/
uint8_t Sd2Card::erase(uint32_t firstBlock, uint32_t lastBlock) {
if (!eraseSingleBlockEnable()) {
error(SD_CARD_ERROR_ERASE_SINGLE_BLOCK);
goto fail;
}
if (type_ != SD_CARD_TYPE_SDHC) {
firstBlock <<= 9;
lastBlock <<= 9;
}
if (cardCommand(CMD32, firstBlock)
|| cardCommand(CMD33, lastBlock)
|| cardCommand(CMD38, 0)) {
error(SD_CARD_ERROR_ERASE);
goto fail;
}
if (!waitNotBusy(SD_ERASE_TIMEOUT)) {
error(SD_CARD_ERROR_ERASE_TIMEOUT);
goto fail;
}
chipSelectHigh();
return true;
fail:
chipSelectHigh();
return false;
}
//------------------------------------------------------------------------------
/** Determine if card supports single block erase.
\return The value one, true, is returned if single block erase is supported.
The value zero, false, is returned if single block erase is not supported.
*/
uint8_t Sd2Card::eraseSingleBlockEnable(void) {
csd_t csd;
return readCSD(&csd) ? csd.v1.erase_blk_en : 0;
}
//------------------------------------------------------------------------------
/**
Initialize an SD flash memory card.
\param[in] sckRateID SPI clock rate selector. See setSckRate().
\param[in] chipSelectPin SD chip select pin number.
\return The value one, true, is returned for success and
the value zero, false, is returned for failure. The reason for failure
can be determined by calling errorCode() and errorData().
*/
uint8_t Sd2Card::init(uint8_t sckRateID, uint8_t chipSelectPin) {
errorCode_ = inBlock_ = partialBlockRead_ = type_ = 0;
chipSelectPin_ = chipSelectPin;
// 16-bit init start time allows over a minute
unsigned int t0 = millis();
uint32_t arg;
// set pin modes
pinMode(chipSelectPin_, OUTPUT);
digitalWrite(chipSelectPin_, HIGH);
#ifndef USE_SPI_LIB
pinMode(SPI_MISO_PIN, INPUT);
pinMode(SPI_MOSI_PIN, OUTPUT);
pinMode(SPI_SCK_PIN, OUTPUT);
#endif
#ifndef SOFTWARE_SPI
#ifndef USE_SPI_LIB
// SS must be in output mode even it is not chip select
pinMode(SS_PIN, OUTPUT);
digitalWrite(SS_PIN, HIGH); // disable any SPI device using hardware SS pin
// Enable SPI, Master, clock rate f_osc/128
SPCR = (1 << SPE) | (1 << MSTR) | (1 << SPR1) | (1 << SPR0);
// clear double speed
SPSR &= ~(1 << SPI2X);
#else // USE_SPI_LIB
SDCARD_SPI.begin();
settings = SPISettings(250000, MSBFIRST, SPI_MODE0);
#endif // USE_SPI_LIB
#endif // SOFTWARE_SPI
// must supply min of 74 clock cycles with CS high.
#ifdef USE_SPI_LIB
SDCARD_SPI.beginTransaction(settings);
#endif
for (uint8_t i = 0; i < 10; i++) {
spiSend(0XFF);
}
#ifdef USE_SPI_LIB
SDCARD_SPI.endTransaction();
#endif
chipSelectLow();
// command to go idle in SPI mode
while ((status_ = cardCommand(CMD0, 0)) != R1_IDLE_STATE) {
unsigned int d = millis() - t0;
if (d > SD_INIT_TIMEOUT) {
error(SD_CARD_ERROR_CMD0);
goto fail;
}
}
// check SD version
if ((cardCommand(CMD8, 0x1AA) & R1_ILLEGAL_COMMAND)) {
type(SD_CARD_TYPE_SD1);
} else {
// only need last byte of r7 response
for (uint8_t i = 0; i < 4; i++) {
status_ = spiRec();
}
if (status_ != 0XAA) {
error(SD_CARD_ERROR_CMD8);
goto fail;
}
type(SD_CARD_TYPE_SD2);
}
// initialize card and send host supports SDHC if SD2
arg = type() == SD_CARD_TYPE_SD2 ? 0X40000000 : 0;
while ((status_ = cardAcmd(ACMD41, arg)) != R1_READY_STATE) {
// check for timeout
unsigned int d = millis() - t0;
if (d > SD_INIT_TIMEOUT) {
error(SD_CARD_ERROR_ACMD41);
goto fail;
}
}
// if SD2 read OCR register to check for SDHC card
if (type() == SD_CARD_TYPE_SD2) {
if (cardCommand(CMD58, 0)) {
error(SD_CARD_ERROR_CMD58);
goto fail;
}
if ((spiRec() & 0XC0) == 0XC0) {
type(SD_CARD_TYPE_SDHC);
}
// discard rest of ocr - contains allowed voltage range
for (uint8_t i = 0; i < 3; i++) {
spiRec();
}
}
chipSelectHigh();
#ifndef SOFTWARE_SPI
return setSckRate(sckRateID);
#else // SOFTWARE_SPI
return true;
#endif // SOFTWARE_SPI
fail:
chipSelectHigh();
return false;
}
//------------------------------------------------------------------------------
/**
Enable or disable partial block reads.
Enabling partial block reads improves performance by allowing a block
to be read over the SPI bus as several sub-blocks. Errors may occur
if the time between reads is too long since the SD card may timeout.
The SPI SS line will be held low until the entire block is read or
readEnd() is called.
Use this for applications like the Adafruit Wave Shield.
\param[in] value The value TRUE (non-zero) or FALSE (zero).)
*/
void Sd2Card::partialBlockRead(uint8_t value) {
readEnd();
partialBlockRead_ = value;
}
//------------------------------------------------------------------------------
/**
Read a 512 byte block from an SD card device.
\param[in] block Logical block to be read.
\param[out] dst Pointer to the location that will receive the data.
\return The value one, true, is returned for success and
the value zero, false, is returned for failure.
*/
uint8_t Sd2Card::readBlock(uint32_t block, uint8_t* dst) {
return readData(block, 0, 512, dst);
}
//------------------------------------------------------------------------------
/**
Read part of a 512 byte block from an SD card.
\param[in] block Logical block to be read.
\param[in] offset Number of bytes to skip at start of block
\param[out] dst Pointer to the location that will receive the data.
\param[in] count Number of bytes to read
\return The value one, true, is returned for success and
the value zero, false, is returned for failure.
*/
uint8_t Sd2Card::readData(uint32_t block,
uint16_t offset, uint16_t count, uint8_t* dst) {
if (count == 0) {
return true;
}
if ((count + offset) > 512) {
goto fail;
}
if (!inBlock_ || block != block_ || offset < offset_) {
block_ = block;
// use address if not SDHC card
if (type() != SD_CARD_TYPE_SDHC) {
block <<= 9;
}
if (cardCommand(CMD17, block)) {
error(SD_CARD_ERROR_CMD17);
goto fail;
}
if (!waitStartBlock()) {
goto fail;
}
offset_ = 0;
inBlock_ = 1;
}
#ifdef OPTIMIZE_HARDWARE_SPI
// start first spi transfer
SPDR = 0XFF;
// skip data before offset
for (; offset_ < offset; offset_++) {
while (!(SPSR & (1 << SPIF)))
;
SPDR = 0XFF;
}
// transfer data
n = count - 1;
for (uint16_t i = 0; i < n; i++) {
while (!(SPSR & (1 << SPIF)))
;
dst[i] = SPDR;
SPDR = 0XFF;
}
// wait for last byte
while (!(SPSR & (1 << SPIF)))
;
dst[n] = SPDR;
#else // OPTIMIZE_HARDWARE_SPI
// skip data before offset
for (; offset_ < offset; offset_++) {
spiRec();
}
// transfer data
for (uint16_t i = 0; i < count; i++) {
dst[i] = spiRec();
}
#endif // OPTIMIZE_HARDWARE_SPI
offset_ += count;
if (!partialBlockRead_ || offset_ >= 512) {
// read rest of data, checksum and set chip select high
readEnd();
}
return true;
fail:
chipSelectHigh();
return false;
}
//------------------------------------------------------------------------------
/** Skip remaining data in a block when in partial block read mode. */
void Sd2Card::readEnd(void) {
if (inBlock_) {
// skip data and crc
#ifdef OPTIMIZE_HARDWARE_SPI
// optimize skip for hardware
SPDR = 0XFF;
while (offset_++ < 513) {
while (!(SPSR & (1 << SPIF)))
;
SPDR = 0XFF;
}
// wait for last crc byte
while (!(SPSR & (1 << SPIF)))
;
#else // OPTIMIZE_HARDWARE_SPI
while (offset_++ < 514) {
spiRec();
}
#endif // OPTIMIZE_HARDWARE_SPI
chipSelectHigh();
inBlock_ = 0;
}
}
//------------------------------------------------------------------------------
/** read CID or CSR register */
uint8_t Sd2Card::readRegister(uint8_t cmd, void* buf) {
uint8_t* dst = reinterpret_cast<uint8_t*>(buf);
if (cardCommand(cmd, 0)) {
error(SD_CARD_ERROR_READ_REG);
goto fail;
}
if (!waitStartBlock()) {
goto fail;
}
// transfer data
for (uint16_t i = 0; i < 16; i++) {
dst[i] = spiRec();
}
spiRec(); // get first crc byte
spiRec(); // get second crc byte
chipSelectHigh();
return true;
fail:
chipSelectHigh();
return false;
}
//------------------------------------------------------------------------------
/**
Set the SPI clock rate.
\param[in] sckRateID A value in the range [0, 6].
The SPI clock will be set to F_CPU/pow(2, 1 + sckRateID). The maximum
SPI rate is F_CPU/2 for \a sckRateID = 0 and the minimum rate is F_CPU/128
for \a scsRateID = 6.
\return The value one, true, is returned for success and the value zero,
false, is returned for an invalid value of \a sckRateID.
*/
uint8_t Sd2Card::setSckRate(uint8_t sckRateID) {
if (sckRateID > 6) {
error(SD_CARD_ERROR_SCK_RATE);
return false;
}
#ifndef USE_SPI_LIB
// see avr processor datasheet for SPI register bit definitions
if ((sckRateID & 1) || sckRateID == 6) {
SPSR &= ~(1 << SPI2X);
} else {
SPSR |= (1 << SPI2X);
}
SPCR &= ~((1 << SPR1) | (1 << SPR0));
SPCR |= (sckRateID & 4 ? (1 << SPR1) : 0)
| (sckRateID & 2 ? (1 << SPR0) : 0);
#else // USE_SPI_LIB
switch (sckRateID) {
case 0: settings = SPISettings(25000000, MSBFIRST, SPI_MODE0); break;
case 1: settings = SPISettings(4000000, MSBFIRST, SPI_MODE0); break;
case 2: settings = SPISettings(2000000, MSBFIRST, SPI_MODE0); break;
case 3: settings = SPISettings(1000000, MSBFIRST, SPI_MODE0); break;
case 4: settings = SPISettings(500000, MSBFIRST, SPI_MODE0); break;
case 5: settings = SPISettings(250000, MSBFIRST, SPI_MODE0); break;
default: settings = SPISettings(125000, MSBFIRST, SPI_MODE0);
}
#endif // USE_SPI_LIB
return true;
}
#ifdef USE_SPI_LIB
//------------------------------------------------------------------------------
// set the SPI clock frequency
uint8_t Sd2Card::setSpiClock(uint32_t clock) {
settings = SPISettings(clock, MSBFIRST, SPI_MODE0);
return true;
}
#endif
//------------------------------------------------------------------------------
// wait for card to go not busy
uint8_t Sd2Card::waitNotBusy(unsigned int timeoutMillis) {
unsigned int t0 = millis();
unsigned int d;
do {
if (spiRec() == 0XFF) {
return true;
}
d = millis() - t0;
} while (d < timeoutMillis);
return false;
}
//------------------------------------------------------------------------------
/** Wait for start block token */
uint8_t Sd2Card::waitStartBlock(void) {
unsigned int t0 = millis();
while ((status_ = spiRec()) == 0XFF) {
unsigned int d = millis() - t0;
if (d > SD_READ_TIMEOUT) {
error(SD_CARD_ERROR_READ_TIMEOUT);
goto fail;
}
}
if (status_ != DATA_START_BLOCK) {
error(SD_CARD_ERROR_READ);
goto fail;
}
return true;
fail:
chipSelectHigh();
return false;
}
//------------------------------------------------------------------------------
/**
Writes a 512 byte block to an SD card.
\param[in] blockNumber Logical block to be written.
\param[in] src Pointer to the location of the data to be written.
\param[in] blocking If the write should be blocking.
\return The value one, true, is returned for success and
the value zero, false, is returned for failure.
*/
uint8_t Sd2Card::writeBlock(uint32_t blockNumber, const uint8_t* src, uint8_t blocking) {
#if SD_PROTECT_BLOCK_ZERO
// don't allow write to first block
if (blockNumber == 0) {
error(SD_CARD_ERROR_WRITE_BLOCK_ZERO);
goto fail;
}
#endif // SD_PROTECT_BLOCK_ZERO
// use address if not SDHC card
if (type() != SD_CARD_TYPE_SDHC) {
blockNumber <<= 9;
}
if (cardCommand(CMD24, blockNumber)) {
error(SD_CARD_ERROR_CMD24);
goto fail;
}
if (!writeData(DATA_START_BLOCK, src)) {
goto fail;
}
if (blocking) {
// wait for flash programming to complete
if (!waitNotBusy(SD_WRITE_TIMEOUT)) {
error(SD_CARD_ERROR_WRITE_TIMEOUT);
goto fail;
}
// response is r2 so get and check two bytes for nonzero
if (cardCommand(CMD13, 0) || spiRec()) {
error(SD_CARD_ERROR_WRITE_PROGRAMMING);
goto fail;
}
}
chipSelectHigh();
return true;
fail:
chipSelectHigh();
return false;
}
//------------------------------------------------------------------------------
/** Write one data block in a multiple block write sequence */
uint8_t Sd2Card::writeData(const uint8_t* src) {
// wait for previous write to finish
if (!waitNotBusy(SD_WRITE_TIMEOUT)) {
error(SD_CARD_ERROR_WRITE_MULTIPLE);
chipSelectHigh();
return false;
}
return writeData(WRITE_MULTIPLE_TOKEN, src);
}
//------------------------------------------------------------------------------
// send one block of data for write block or write multiple blocks
uint8_t Sd2Card::writeData(uint8_t token, const uint8_t* src) {
#ifdef OPTIMIZE_HARDWARE_SPI
// send data - optimized loop
SPDR = token;
// send two byte per iteration
for (uint16_t i = 0; i < 512; i += 2) {
while (!(SPSR & (1 << SPIF)))
;
SPDR = src[i];
while (!(SPSR & (1 << SPIF)))
;
SPDR = src[i + 1];
}
// wait for last data byte
while (!(SPSR & (1 << SPIF)))
;
#else // OPTIMIZE_HARDWARE_SPI
spiSend(token);
for (uint16_t i = 0; i < 512; i++) {
spiSend(src[i]);
}
#endif // OPTIMIZE_HARDWARE_SPI
spiSend(0xff); // dummy crc
spiSend(0xff); // dummy crc
status_ = spiRec();
if ((status_ & DATA_RES_MASK) != DATA_RES_ACCEPTED) {
error(SD_CARD_ERROR_WRITE);
chipSelectHigh();
return false;
}
return true;
}
//------------------------------------------------------------------------------
/** Start a write multiple blocks sequence.
\param[in] blockNumber Address of first block in sequence.
\param[in] eraseCount The number of blocks to be pre-erased.
\note This function is used with writeData() and writeStop()
for optimized multiple block writes.
\return The value one, true, is returned for success and
the value zero, false, is returned for failure.
*/
uint8_t Sd2Card::writeStart(uint32_t blockNumber, uint32_t eraseCount) {
#if SD_PROTECT_BLOCK_ZERO
// don't allow write to first block
if (blockNumber == 0) {
error(SD_CARD_ERROR_WRITE_BLOCK_ZERO);
goto fail;
}
#endif // SD_PROTECT_BLOCK_ZERO
// send pre-erase count
if (cardAcmd(ACMD23, eraseCount)) {
error(SD_CARD_ERROR_ACMD23);
goto fail;
}
// use address if not SDHC card
if (type() != SD_CARD_TYPE_SDHC) {
blockNumber <<= 9;
}
if (cardCommand(CMD25, blockNumber)) {
error(SD_CARD_ERROR_CMD25);
goto fail;
}
return true;
fail:
chipSelectHigh();
return false;
}
//------------------------------------------------------------------------------
/** End a write multiple blocks sequence.
\return The value one, true, is returned for success and
the value zero, false, is returned for failure.
*/
uint8_t Sd2Card::writeStop(void) {
if (!waitNotBusy(SD_WRITE_TIMEOUT)) {
goto fail;
}
spiSend(STOP_TRAN_TOKEN);
if (!waitNotBusy(SD_WRITE_TIMEOUT)) {
goto fail;
}
chipSelectHigh();
return true;
fail:
error(SD_CARD_ERROR_STOP_TRAN);
chipSelectHigh();
return false;
}
//------------------------------------------------------------------------------
/** Check if the SD card is busy
\return The value one, true, is returned when is busy and
the value zero, false, is returned for when is NOT busy.
*/
uint8_t Sd2Card::isBusy(void) {
chipSelectLow();
byte b = spiRec();
chipSelectHigh();
return (b != 0XFF);
}

View File

@@ -0,0 +1,273 @@
/* Arduino Sd2Card Library
Copyright (C) 2009 by William Greiman
This file is part of the Arduino Sd2Card Library
This Library is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with the Arduino Sd2Card Library. If not, see
<http://www.gnu.org/licenses/>.
*/
#ifndef Sd2Card_h
#define Sd2Card_h
/**
\file
Sd2Card class
*/
#include "Sd2PinMap.h"
#include "SdInfo.h"
/** Set SCK to max rate of F_CPU/2. See Sd2Card::setSckRate(). */
uint8_t const SPI_FULL_SPEED = 0;
/** Set SCK rate to F_CPU/4. See Sd2Card::setSckRate(). */
uint8_t const SPI_HALF_SPEED = 1;
/** Set SCK rate to F_CPU/8. Sd2Card::setSckRate(). */
uint8_t const SPI_QUARTER_SPEED = 2;
/**
USE_SPI_LIB: if set, use the SPI library bundled with Arduino IDE, otherwise
run with a standalone driver for AVR.
*/
#define USE_SPI_LIB
/**
Define MEGA_SOFT_SPI non-zero to use software SPI on Mega Arduinos.
Pins used are SS 10, MOSI 11, MISO 12, and SCK 13.
MEGA_SOFT_SPI allows an unmodified Adafruit GPS Shield to be used
on Mega Arduinos. Software SPI works well with GPS Shield V1.1
but many SD cards will fail with GPS Shield V1.0.
*/
#define MEGA_SOFT_SPI 0
//------------------------------------------------------------------------------
#if MEGA_SOFT_SPI && (defined(__AVR_ATmega1280__)||defined(__AVR_ATmega2560__))
#define SOFTWARE_SPI
#endif // MEGA_SOFT_SPI
//------------------------------------------------------------------------------
// SPI pin definitions
//
#ifndef SOFTWARE_SPI
// hardware pin defs
// include pins_arduino.h or variant.h depending on architecture, via Arduino.h
#include <Arduino.h>
/**
SD Chip Select pin
Warning if this pin is redefined the hardware SS will pin will be enabled
as an output by init(). An avr processor will not function as an SPI
master unless SS is set to output mode.
*/
#ifndef SDCARD_SS_PIN
/** The default chip select pin for the SD card is SS. */
uint8_t const SD_CHIP_SELECT_PIN = SS;
#else
uint8_t const SD_CHIP_SELECT_PIN = SDCARD_SS_PIN;
#endif
// The following three pins must not be redefined for hardware SPI,
// so ensure that they are taken from pins_arduino.h or variant.h, depending on architecture.
#ifndef SDCARD_MOSI_PIN
/** SPI Master Out Slave In pin */
uint8_t const SPI_MOSI_PIN = MOSI;
/** SPI Master In Slave Out pin */
uint8_t const SPI_MISO_PIN = MISO;
/** SPI Clock pin */
uint8_t const SPI_SCK_PIN = SCK;
#else
uint8_t const SPI_MOSI_PIN = SDCARD_MOSI_PIN;
uint8_t const SPI_MISO_PIN = SDCARD_MISO_PIN;
uint8_t const SPI_SCK_PIN = SDCARD_SCK_PIN;
#endif
/** optimize loops for hardware SPI */
#ifndef USE_SPI_LIB
#define OPTIMIZE_HARDWARE_SPI
#endif
#else // SOFTWARE_SPI
// define software SPI pins so Mega can use unmodified GPS Shield
/** SPI chip select pin */
uint8_t const SD_CHIP_SELECT_PIN = 10;
/** SPI Master Out Slave In pin */
uint8_t const SPI_MOSI_PIN = 11;
/** SPI Master In Slave Out pin */
uint8_t const SPI_MISO_PIN = 12;
/** SPI Clock pin */
uint8_t const SPI_SCK_PIN = 13;
#endif // SOFTWARE_SPI
//------------------------------------------------------------------------------
/** Protect block zero from write if nonzero */
#define SD_PROTECT_BLOCK_ZERO 1
/** init timeout ms */
unsigned int const SD_INIT_TIMEOUT = 2000;
/** erase timeout ms */
unsigned int const SD_ERASE_TIMEOUT = 10000;
/** read timeout ms */
unsigned int const SD_READ_TIMEOUT = 300;
/** write time out ms */
unsigned int const SD_WRITE_TIMEOUT = 600;
//------------------------------------------------------------------------------
// SD card errors
/** timeout error for command CMD0 */
uint8_t const SD_CARD_ERROR_CMD0 = 0X1;
/** CMD8 was not accepted - not a valid SD card*/
uint8_t const SD_CARD_ERROR_CMD8 = 0X2;
/** card returned an error response for CMD17 (read block) */
uint8_t const SD_CARD_ERROR_CMD17 = 0X3;
/** card returned an error response for CMD24 (write block) */
uint8_t const SD_CARD_ERROR_CMD24 = 0X4;
/** WRITE_MULTIPLE_BLOCKS command failed */
uint8_t const SD_CARD_ERROR_CMD25 = 0X05;
/** card returned an error response for CMD58 (read OCR) */
uint8_t const SD_CARD_ERROR_CMD58 = 0X06;
/** SET_WR_BLK_ERASE_COUNT failed */
uint8_t const SD_CARD_ERROR_ACMD23 = 0X07;
/** card's ACMD41 initialization process timeout */
uint8_t const SD_CARD_ERROR_ACMD41 = 0X08;
/** card returned a bad CSR version field */
uint8_t const SD_CARD_ERROR_BAD_CSD = 0X09;
/** erase block group command failed */
uint8_t const SD_CARD_ERROR_ERASE = 0X0A;
/** card not capable of single block erase */
uint8_t const SD_CARD_ERROR_ERASE_SINGLE_BLOCK = 0X0B;
/** Erase sequence timed out */
uint8_t const SD_CARD_ERROR_ERASE_TIMEOUT = 0X0C;
/** card returned an error token instead of read data */
uint8_t const SD_CARD_ERROR_READ = 0X0D;
/** read CID or CSD failed */
uint8_t const SD_CARD_ERROR_READ_REG = 0X0E;
/** timeout while waiting for start of read data */
uint8_t const SD_CARD_ERROR_READ_TIMEOUT = 0X0F;
/** card did not accept STOP_TRAN_TOKEN */
uint8_t const SD_CARD_ERROR_STOP_TRAN = 0X10;
/** card returned an error token as a response to a write operation */
uint8_t const SD_CARD_ERROR_WRITE = 0X11;
/** attempt to write protected block zero */
uint8_t const SD_CARD_ERROR_WRITE_BLOCK_ZERO = 0X12;
/** card did not go ready for a multiple block write */
uint8_t const SD_CARD_ERROR_WRITE_MULTIPLE = 0X13;
/** card returned an error to a CMD13 status check after a write */
uint8_t const SD_CARD_ERROR_WRITE_PROGRAMMING = 0X14;
/** timeout occurred during write programming */
uint8_t const SD_CARD_ERROR_WRITE_TIMEOUT = 0X15;
/** incorrect rate selected */
uint8_t const SD_CARD_ERROR_SCK_RATE = 0X16;
//------------------------------------------------------------------------------
// card types
/** Standard capacity V1 SD card */
uint8_t const SD_CARD_TYPE_SD1 = 1;
/** Standard capacity V2 SD card */
uint8_t const SD_CARD_TYPE_SD2 = 2;
/** High Capacity SD card */
uint8_t const SD_CARD_TYPE_SDHC = 3;
//------------------------------------------------------------------------------
/**
\class Sd2Card
\brief Raw access to SD and SDHC flash memory cards.
*/
class Sd2Card {
public:
/** Construct an instance of Sd2Card. */
Sd2Card(void) : errorCode_(0), inBlock_(0), partialBlockRead_(0), type_(0) {}
uint32_t cardSize(void);
uint8_t erase(uint32_t firstBlock, uint32_t lastBlock);
uint8_t eraseSingleBlockEnable(void);
/**
\return error code for last error. See Sd2Card.h for a list of error codes.
*/
uint8_t errorCode(void) const {
return errorCode_;
}
/** \return error data for last error. */
uint8_t errorData(void) const {
return status_;
}
/**
Initialize an SD flash memory card with default clock rate and chip
select pin. See sd2Card::init(uint8_t sckRateID, uint8_t chipSelectPin).
*/
uint8_t init(void) {
return init(SPI_FULL_SPEED, SD_CHIP_SELECT_PIN);
}
/**
Initialize an SD flash memory card with the selected SPI clock rate
and the default SD chip select pin.
See sd2Card::init(uint8_t sckRateID, uint8_t chipSelectPin).
*/
uint8_t init(uint8_t sckRateID) {
return init(sckRateID, SD_CHIP_SELECT_PIN);
}
uint8_t init(uint8_t sckRateID, uint8_t chipSelectPin);
void partialBlockRead(uint8_t value);
/** Returns the current value, true or false, for partial block read. */
uint8_t partialBlockRead(void) const {
return partialBlockRead_;
}
uint8_t readBlock(uint32_t block, uint8_t* dst);
uint8_t readData(uint32_t block,
uint16_t offset, uint16_t count, uint8_t* dst);
/**
Read a cards CID register. The CID contains card identification
information such as Manufacturer ID, Product name, Product serial
number and Manufacturing date. */
uint8_t readCID(cid_t* cid) {
return readRegister(CMD10, cid);
}
/**
Read a cards CSD register. The CSD contains Card-Specific Data that
provides information regarding access to the card's contents. */
uint8_t readCSD(csd_t* csd) {
return readRegister(CMD9, csd);
}
void readEnd(void);
uint8_t setSckRate(uint8_t sckRateID);
#ifdef USE_SPI_LIB
uint8_t setSpiClock(uint32_t clock);
#endif
/** Return the card type: SD V1, SD V2 or SDHC */
uint8_t type(void) const {
return type_;
}
uint8_t writeBlock(uint32_t blockNumber, const uint8_t* src, uint8_t blocking = 1);
uint8_t writeData(const uint8_t* src);
uint8_t writeStart(uint32_t blockNumber, uint32_t eraseCount);
uint8_t writeStop(void);
uint8_t isBusy(void);
private:
uint32_t block_;
uint8_t chipSelectPin_;
uint8_t errorCode_;
uint8_t inBlock_;
uint16_t offset_;
uint8_t partialBlockRead_;
uint8_t status_;
uint8_t type_;
// private functions
uint8_t cardAcmd(uint8_t cmd, uint32_t arg) {
cardCommand(CMD55, 0);
return cardCommand(cmd, arg);
}
uint8_t cardCommand(uint8_t cmd, uint32_t arg);
void error(uint8_t code) {
errorCode_ = code;
}
uint8_t readRegister(uint8_t cmd, void* buf);
uint8_t sendWriteCommand(uint32_t blockNumber, uint32_t eraseCount);
void chipSelectHigh(void);
void chipSelectLow(void);
void type(uint8_t value) {
type_ = value;
}
uint8_t waitNotBusy(unsigned int timeoutMillis);
uint8_t writeData(uint8_t token, const uint8_t* src);
uint8_t waitStartBlock(void);
};
#endif // Sd2Card_h

View File

@@ -0,0 +1,528 @@
/* Arduino SdFat Library
Copyright (C) 2010 by William Greiman
This file is part of the Arduino SdFat Library
This Library is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with the Arduino SdFat Library. If not, see
<http://www.gnu.org/licenses/>.
*/
#if defined(__arm__) // Arduino Due Board follows
#ifndef Sd2PinMap_h
#define Sd2PinMap_h
#include <Arduino.h>
uint8_t const SS_PIN = SS;
uint8_t const MOSI_PIN = MOSI;
uint8_t const MISO_PIN = MISO;
uint8_t const SCK_PIN = SCK;
#endif // Sd2PinMap_h
#elif defined(__AVR_ATmega4809__) || defined(__AVR_ATmega4808__) || \
defined(__AVR_ATmega3209__) || defined(__AVR_ATmega3208__) || \
defined(__AVR_ATmega1609__) || defined(__AVR_ATmega1608__) || \
defined(__AVR_ATmega809__) || defined(__AVR_ATmega808__)
#ifndef Sd2PinMap_h
#define Sd2PinMap_h
#include <Arduino.h>
uint8_t const SS_PIN = SS;
uint8_t const MOSI_PIN = MOSI;
uint8_t const MISO_PIN = MISO;
uint8_t const SCK_PIN = SCK;
#endif // Sd2PinMap_h
#elif defined(__AVR__) // Other AVR based Boards follows
// Warning this file was generated by a program.
#ifndef Sd2PinMap_h
#define Sd2PinMap_h
#include <avr/io.h>
//------------------------------------------------------------------------------
/** struct for mapping digital pins */
struct pin_map_t {
volatile uint8_t* ddr;
volatile uint8_t* pin;
volatile uint8_t* port;
uint8_t bit;
};
//------------------------------------------------------------------------------
#if defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__)
// Mega
// Two Wire (aka I2C) ports
uint8_t const SDA_PIN = 20;
uint8_t const SCL_PIN = 21;
// SPI port
uint8_t const SS_PIN = 53;
uint8_t const MOSI_PIN = 51;
uint8_t const MISO_PIN = 50;
uint8_t const SCK_PIN = 52;
static const pin_map_t digitalPinMap[] = {
{&DDRE, &PINE, &PORTE, 0}, // E0 0
{&DDRE, &PINE, &PORTE, 1}, // E1 1
{&DDRE, &PINE, &PORTE, 4}, // E4 2
{&DDRE, &PINE, &PORTE, 5}, // E5 3
{&DDRG, &PING, &PORTG, 5}, // G5 4
{&DDRE, &PINE, &PORTE, 3}, // E3 5
{&DDRH, &PINH, &PORTH, 3}, // H3 6
{&DDRH, &PINH, &PORTH, 4}, // H4 7
{&DDRH, &PINH, &PORTH, 5}, // H5 8
{&DDRH, &PINH, &PORTH, 6}, // H6 9
{&DDRB, &PINB, &PORTB, 4}, // B4 10
{&DDRB, &PINB, &PORTB, 5}, // B5 11
{&DDRB, &PINB, &PORTB, 6}, // B6 12
{&DDRB, &PINB, &PORTB, 7}, // B7 13
{&DDRJ, &PINJ, &PORTJ, 1}, // J1 14
{&DDRJ, &PINJ, &PORTJ, 0}, // J0 15
{&DDRH, &PINH, &PORTH, 1}, // H1 16
{&DDRH, &PINH, &PORTH, 0}, // H0 17
{&DDRD, &PIND, &PORTD, 3}, // D3 18
{&DDRD, &PIND, &PORTD, 2}, // D2 19
{&DDRD, &PIND, &PORTD, 1}, // D1 20
{&DDRD, &PIND, &PORTD, 0}, // D0 21
{&DDRA, &PINA, &PORTA, 0}, // A0 22
{&DDRA, &PINA, &PORTA, 1}, // A1 23
{&DDRA, &PINA, &PORTA, 2}, // A2 24
{&DDRA, &PINA, &PORTA, 3}, // A3 25
{&DDRA, &PINA, &PORTA, 4}, // A4 26
{&DDRA, &PINA, &PORTA, 5}, // A5 27
{&DDRA, &PINA, &PORTA, 6}, // A6 28
{&DDRA, &PINA, &PORTA, 7}, // A7 29
{&DDRC, &PINC, &PORTC, 7}, // C7 30
{&DDRC, &PINC, &PORTC, 6}, // C6 31
{&DDRC, &PINC, &PORTC, 5}, // C5 32
{&DDRC, &PINC, &PORTC, 4}, // C4 33
{&DDRC, &PINC, &PORTC, 3}, // C3 34
{&DDRC, &PINC, &PORTC, 2}, // C2 35
{&DDRC, &PINC, &PORTC, 1}, // C1 36
{&DDRC, &PINC, &PORTC, 0}, // C0 37
{&DDRD, &PIND, &PORTD, 7}, // D7 38
{&DDRG, &PING, &PORTG, 2}, // G2 39
{&DDRG, &PING, &PORTG, 1}, // G1 40
{&DDRG, &PING, &PORTG, 0}, // G0 41
{&DDRL, &PINL, &PORTL, 7}, // L7 42
{&DDRL, &PINL, &PORTL, 6}, // L6 43
{&DDRL, &PINL, &PORTL, 5}, // L5 44
{&DDRL, &PINL, &PORTL, 4}, // L4 45
{&DDRL, &PINL, &PORTL, 3}, // L3 46
{&DDRL, &PINL, &PORTL, 2}, // L2 47
{&DDRL, &PINL, &PORTL, 1}, // L1 48
{&DDRL, &PINL, &PORTL, 0}, // L0 49
{&DDRB, &PINB, &PORTB, 3}, // B3 50
{&DDRB, &PINB, &PORTB, 2}, // B2 51
{&DDRB, &PINB, &PORTB, 1}, // B1 52
{&DDRB, &PINB, &PORTB, 0}, // B0 53
{&DDRF, &PINF, &PORTF, 0}, // F0 54
{&DDRF, &PINF, &PORTF, 1}, // F1 55
{&DDRF, &PINF, &PORTF, 2}, // F2 56
{&DDRF, &PINF, &PORTF, 3}, // F3 57
{&DDRF, &PINF, &PORTF, 4}, // F4 58
{&DDRF, &PINF, &PORTF, 5}, // F5 59
{&DDRF, &PINF, &PORTF, 6}, // F6 60
{&DDRF, &PINF, &PORTF, 7}, // F7 61
{&DDRK, &PINK, &PORTK, 0}, // K0 62
{&DDRK, &PINK, &PORTK, 1}, // K1 63
{&DDRK, &PINK, &PORTK, 2}, // K2 64
{&DDRK, &PINK, &PORTK, 3}, // K3 65
{&DDRK, &PINK, &PORTK, 4}, // K4 66
{&DDRK, &PINK, &PORTK, 5}, // K5 67
{&DDRK, &PINK, &PORTK, 6}, // K6 68
{&DDRK, &PINK, &PORTK, 7} // K7 69
};
//------------------------------------------------------------------------------
#elif (defined(__AVR_ATmega644P__) || defined(__AVR_ATmega1284P__)) && defined(CORE_MICRODUINO)
// Microduino Core+
// Two Wire (aka I2C) ports
uint8_t const SDA_PIN = 20;
uint8_t const SCL_PIN = 21;
// SPI port
uint8_t const SS_PIN = 10;
uint8_t const MOSI_PIN = 11;
uint8_t const MISO_PIN = 12;
uint8_t const SCK_PIN = 13;
static const pin_map_t digitalPinMap[] = {
{&DDRD, &PIND, &PORTD, 0}, // D0 PD0
{&DDRD, &PIND, &PORTD, 1}, // D1 PD1
{&DDRD, &PIND, &PORTD, 2}, // D2 PD2
{&DDRD, &PIND, &PORTD, 3}, // D3 PD3
{&DDRB, &PINB, &PORTB, 0}, // D4 PB0
{&DDRB, &PINB, &PORTB, 1}, // D5 PB1
{&DDRB, &PINB, &PORTB, 2}, // D6 PB2
{&DDRB, &PINB, &PORTB, 3}, // D7 PB3
{&DDRD, &PIND, &PORTD, 6}, // D8 PD6
{&DDRD, &PIND, &PORTD, 5}, // D9 PD5
{&DDRB, &PINB, &PORTB, 4}, // D10 PB4
{&DDRB, &PINB, &PORTB, 5}, // D11 PB5
{&DDRB, &PINB, &PORTB, 6}, // D12 PB6
{&DDRB, &PINB, &PORTB, 7}, // D13 PB7
{&DDRC, &PINC, &PORTC, 7}, // D14 PC7
{&DDRC, &PINC, &PORTC, 6}, // D15 PC6
{&DDRC, &PINC, &PORTC, 5}, // D16 PC5
{&DDRC, &PINC, &PORTC, 4}, // D17 PC4
{&DDRC, &PINC, &PORTC, 3}, // D18 PC3
{&DDRC, &PINC, &PORTC, 2}, // D19 PC2
{&DDRC, &PINC, &PORTC, 1}, // D20 PC1
{&DDRC, &PINC, &PORTC, 0}, // D21 PC0
{&DDRD, &PIND, &PORTD, 4}, // D22 PD4
{&DDRD, &PIND, &PORTD, 7}, // D23 PD7
{&DDRA, &PINA, &PORTA, 7}, // D24 PA7
{&DDRA, &PINA, &PORTA, 6}, // D25 PA6
{&DDRA, &PINA, &PORTA, 5}, // D26 PA5
{&DDRA, &PINA, &PORTA, 4}, // D27 PA4
{&DDRA, &PINA, &PORTA, 3}, // D28 PA3
{&DDRA, &PINA, &PORTA, 2}, // D29 PA2
{&DDRA, &PINA, &PORTA, 1}, // D30 PA1
{&DDRA, &PINA, &PORTA, 0} // D31 PA0
};
//------------------------------------------------------------------------------
#elif defined(__AVR_ATmega128RFA1__) && defined(CORE_MICRODUINO)
// Microduino Core RF
// Two Wire (aka I2C) ports
uint8_t const SDA_PIN = 18;
uint8_t const SCL_PIN = 19;
// SPI port
uint8_t const SS_PIN = 10;
uint8_t const MOSI_PIN = 11;
uint8_t const MISO_PIN = 12;
uint8_t const SCK_PIN = 13;
static const pin_map_t digitalPinMap[] = {
{&DDRD, &PINE, &PORTE, 0}, // D0 PE0
{&DDRD, &PINE, &PORTE, 1}, // D1 PE1
{&DDRD, &PIND, &PORTD, 2}, // D2 PD2
{&DDRD, &PIND, &PORTD, 3}, // D3 PD3
{&DDRB, &PINE, &PORTE, 3}, // D4 PE3
{&DDRB, &PINE, &PORTE, 4}, // D5 PE4
{&DDRB, &PINE, &PORTE, 5}, // D6 PE5
{&DDRB, &PINB, &PORTB, 7}, // D7 PB7
{&DDRD, &PINB, &PORTB, 6}, // D8 PB6
{&DDRD, &PINB, &PORTB, 5}, // D9 PB5
{&DDRB, &PINB, &PORTB, 4}, // D10 PB4
{&DDRB, &PINB, &PORTB, 2}, // D11 PB2
{&DDRB, &PINB, &PORTB, 3}, // D12 PB3
{&DDRB, &PINB, &PORTB, 1}, // D13 PB1
{&DDRF, &PINF, &PORTF, 7}, // D14 PF7
{&DDRF, &PINF, &PORTF, 6}, // D15 PF6
{&DDRF, &PINF, &PORTF, 5}, // D16 PF5
{&DDRF, &PINF, &PORTF, 4}, // D17 PF4
{&DDRD, &PIND, &PORTD, 1}, // D18 PD1
{&DDRD, &PIND, &PORTD, 0}, // D19 PD0
{&DDRF, &PINF, &PORTF, 3}, // D20 PF3
{&DDRF, &PINF, &PORTF, 2}, // D21 PF2
};
//------------------------------------------------------------------------------
#elif defined(__AVR_ATmega32U4__) && defined(CORE_MICRODUINO)
// Microduino Core USB
// Two Wire (aka I2C) ports
uint8_t const SDA_PIN = 18;
uint8_t const SCL_PIN = 19;
// SPI port
uint8_t const SS_PIN = 10;
uint8_t const MOSI_PIN = 11;
uint8_t const MISO_PIN = 12;
uint8_t const SCK_PIN = 13;
static const pin_map_t digitalPinMap[] = {
{&DDRD, &PIND, &PORTD, 2}, // D0 - PD2
{&DDRD, &PIND, &PORTD, 3}, // D1 - PD3
{&DDRE, &PINE, &PORTE, 6}, // D2 - PE6
{&DDRD, &PIND, &PORTD, 6}, // D3 - PD6
{&DDRD, &PIND, &PORTD, 7}, // D4 - PD7
{&DDRC, &PINC, &PORTC, 6}, // D5 - PC6
{&DDRC, &PINC, &PORTC, 7}, // D6 - PC7
{&DDRE, &PINE, &PORTE, 7}, // D7 - PE7
{&DDRB, &PINB, &PORTB, 6}, // D8 - PB6
{&DDRB, &PINB, &PORTB, 5}, // D9 - PB5
{&DDRB, &PINB, &PORTB, 0}, // D10 - PB0
{&DDRB, &PINB, &PORTB, 2}, // D11 - MOSI - PB2
{&DDRB, &PINB, &PORTB, 3}, // D12 -MISO - PB3
{&DDRB, &PINB, &PORTB, 1}, // D13 -SCK - PB1
{&DDRF, &PINF, &PORTF, 7}, // D14 - A0 - PF7
{&DDRF, &PINF, &PORTF, 6}, // D15 - A1 - PF6
{&DDRF, &PINF, &PORTF, 5}, // D16 - A2 - PF5
{&DDRF, &PINF, &PORTF, 4}, // D17 - A3 - PF4
{&DDRD, &PIND, &PORTD, 1}, // D18 - PD1
{&DDRD, &PIND, &PORTD, 0}, // D19 - PD0
{&DDRF, &PINF, &PORTF, 1}, // D20 - A6 - PF1
{&DDRF, &PINF, &PORTF, 0}, // D21 - A7 - PF0
};
//------------------------------------------------------------------------------
#elif defined(__AVR_ATmega644P__) || defined(__AVR_ATmega644__)
// Sanguino
// Two Wire (aka I2C) ports
uint8_t const SDA_PIN = 17;
uint8_t const SCL_PIN = 18;
// SPI port
uint8_t const SS_PIN = 4;
uint8_t const MOSI_PIN = 5;
uint8_t const MISO_PIN = 6;
uint8_t const SCK_PIN = 7;
static const pin_map_t digitalPinMap[] = {
{&DDRB, &PINB, &PORTB, 0}, // B0 0
{&DDRB, &PINB, &PORTB, 1}, // B1 1
{&DDRB, &PINB, &PORTB, 2}, // B2 2
{&DDRB, &PINB, &PORTB, 3}, // B3 3
{&DDRB, &PINB, &PORTB, 4}, // B4 4
{&DDRB, &PINB, &PORTB, 5}, // B5 5
{&DDRB, &PINB, &PORTB, 6}, // B6 6
{&DDRB, &PINB, &PORTB, 7}, // B7 7
{&DDRD, &PIND, &PORTD, 0}, // D0 8
{&DDRD, &PIND, &PORTD, 1}, // D1 9
{&DDRD, &PIND, &PORTD, 2}, // D2 10
{&DDRD, &PIND, &PORTD, 3}, // D3 11
{&DDRD, &PIND, &PORTD, 4}, // D4 12
{&DDRD, &PIND, &PORTD, 5}, // D5 13
{&DDRD, &PIND, &PORTD, 6}, // D6 14
{&DDRD, &PIND, &PORTD, 7}, // D7 15
{&DDRC, &PINC, &PORTC, 0}, // C0 16
{&DDRC, &PINC, &PORTC, 1}, // C1 17
{&DDRC, &PINC, &PORTC, 2}, // C2 18
{&DDRC, &PINC, &PORTC, 3}, // C3 19
{&DDRC, &PINC, &PORTC, 4}, // C4 20
{&DDRC, &PINC, &PORTC, 5}, // C5 21
{&DDRC, &PINC, &PORTC, 6}, // C6 22
{&DDRC, &PINC, &PORTC, 7}, // C7 23
{&DDRA, &PINA, &PORTA, 7}, // A7 24
{&DDRA, &PINA, &PORTA, 6}, // A6 25
{&DDRA, &PINA, &PORTA, 5}, // A5 26
{&DDRA, &PINA, &PORTA, 4}, // A4 27
{&DDRA, &PINA, &PORTA, 3}, // A3 28
{&DDRA, &PINA, &PORTA, 2}, // A2 29
{&DDRA, &PINA, &PORTA, 1}, // A1 30
{&DDRA, &PINA, &PORTA, 0} // A0 31
};
//------------------------------------------------------------------------------
#elif defined(__AVR_ATmega32U4__)
// Leonardo
// Two Wire (aka I2C) ports
uint8_t const SDA_PIN = 2;
uint8_t const SCL_PIN = 3;
// SPI port
uint8_t const SS_PIN = 17;
uint8_t const MOSI_PIN = 16;
uint8_t const MISO_PIN = 14;
uint8_t const SCK_PIN = 15;
static const pin_map_t digitalPinMap[] = {
{&DDRD, &PIND, &PORTD, 2}, // D2 0
{&DDRD, &PIND, &PORTD, 3}, // D3 1
{&DDRD, &PIND, &PORTD, 1}, // D1 2
{&DDRD, &PIND, &PORTD, 0}, // D0 3
{&DDRD, &PIND, &PORTD, 4}, // D4 4
{&DDRC, &PINC, &PORTC, 6}, // C6 5
{&DDRD, &PIND, &PORTD, 7}, // D7 6
{&DDRE, &PINE, &PORTE, 6}, // E6 7
{&DDRB, &PINB, &PORTB, 4}, // B4 8
{&DDRB, &PINB, &PORTB, 5}, // B5 9
{&DDRB, &PINB, &PORTB, 6}, // B6 10
{&DDRB, &PINB, &PORTB, 7}, // B7 11
{&DDRD, &PIND, &PORTD, 6}, // D6 12
{&DDRC, &PINC, &PORTC, 7}, // C7 13
{&DDRB, &PINB, &PORTB, 3}, // B3 14
{&DDRB, &PINB, &PORTB, 1}, // B1 15
{&DDRB, &PINB, &PORTB, 2}, // B2 16
{&DDRB, &PINB, &PORTB, 0}, // B0 17
{&DDRF, &PINF, &PORTF, 7}, // F7 18
{&DDRF, &PINF, &PORTF, 6}, // F6 19
{&DDRF, &PINF, &PORTF, 5}, // F5 20
{&DDRF, &PINF, &PORTF, 4}, // F4 21
{&DDRF, &PINF, &PORTF, 1}, // F1 22
{&DDRF, &PINF, &PORTF, 0}, // F0 23
};
//------------------------------------------------------------------------------
#elif defined(__AVR_AT90USB646__) || defined(__AVR_AT90USB1286__)
// Teensy++ 1.0 & 2.0
// Two Wire (aka I2C) ports
uint8_t const SDA_PIN = 1;
uint8_t const SCL_PIN = 0;
// SPI port
uint8_t const SS_PIN = 20;
uint8_t const MOSI_PIN = 22;
uint8_t const MISO_PIN = 23;
uint8_t const SCK_PIN = 21;
static const pin_map_t digitalPinMap[] = {
{&DDRD, &PIND, &PORTD, 0}, // D0 0
{&DDRD, &PIND, &PORTD, 1}, // D1 1
{&DDRD, &PIND, &PORTD, 2}, // D2 2
{&DDRD, &PIND, &PORTD, 3}, // D3 3
{&DDRD, &PIND, &PORTD, 4}, // D4 4
{&DDRD, &PIND, &PORTD, 5}, // D5 5
{&DDRD, &PIND, &PORTD, 6}, // D6 6
{&DDRD, &PIND, &PORTD, 7}, // D7 7
{&DDRE, &PINE, &PORTE, 0}, // E0 8
{&DDRE, &PINE, &PORTE, 1}, // E1 9
{&DDRC, &PINC, &PORTC, 0}, // C0 10
{&DDRC, &PINC, &PORTC, 1}, // C1 11
{&DDRC, &PINC, &PORTC, 2}, // C2 12
{&DDRC, &PINC, &PORTC, 3}, // C3 13
{&DDRC, &PINC, &PORTC, 4}, // C4 14
{&DDRC, &PINC, &PORTC, 5}, // C5 15
{&DDRC, &PINC, &PORTC, 6}, // C6 16
{&DDRC, &PINC, &PORTC, 7}, // C7 17
{&DDRE, &PINE, &PORTE, 6}, // E6 18
{&DDRE, &PINE, &PORTE, 7}, // E7 19
{&DDRB, &PINB, &PORTB, 0}, // B0 20
{&DDRB, &PINB, &PORTB, 1}, // B1 21
{&DDRB, &PINB, &PORTB, 2}, // B2 22
{&DDRB, &PINB, &PORTB, 3}, // B3 23
{&DDRB, &PINB, &PORTB, 4}, // B4 24
{&DDRB, &PINB, &PORTB, 5}, // B5 25
{&DDRB, &PINB, &PORTB, 6}, // B6 26
{&DDRB, &PINB, &PORTB, 7}, // B7 27
{&DDRA, &PINA, &PORTA, 0}, // A0 28
{&DDRA, &PINA, &PORTA, 1}, // A1 29
{&DDRA, &PINA, &PORTA, 2}, // A2 30
{&DDRA, &PINA, &PORTA, 3}, // A3 31
{&DDRA, &PINA, &PORTA, 4}, // A4 32
{&DDRA, &PINA, &PORTA, 5}, // A5 33
{&DDRA, &PINA, &PORTA, 6}, // A6 34
{&DDRA, &PINA, &PORTA, 7}, // A7 35
{&DDRE, &PINE, &PORTE, 4}, // E4 36
{&DDRE, &PINE, &PORTE, 5}, // E5 37
{&DDRF, &PINF, &PORTF, 0}, // F0 38
{&DDRF, &PINF, &PORTF, 1}, // F1 39
{&DDRF, &PINF, &PORTF, 2}, // F2 40
{&DDRF, &PINF, &PORTF, 3}, // F3 41
{&DDRF, &PINF, &PORTF, 4}, // F4 42
{&DDRF, &PINF, &PORTF, 5}, // F5 43
{&DDRF, &PINF, &PORTF, 6}, // F6 44
{&DDRF, &PINF, &PORTF, 7} // F7 45
};
//------------------------------------------------------------------------------
#else // defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__)
// 168 and 328 Arduinos
// Two Wire (aka I2C) ports
uint8_t const SDA_PIN = 18;
uint8_t const SCL_PIN = 19;
// SPI port
uint8_t const SS_PIN = 10;
uint8_t const MOSI_PIN = 11;
uint8_t const MISO_PIN = 12;
uint8_t const SCK_PIN = 13;
static const pin_map_t digitalPinMap[] = {
{&DDRD, &PIND, &PORTD, 0}, // D0 0
{&DDRD, &PIND, &PORTD, 1}, // D1 1
{&DDRD, &PIND, &PORTD, 2}, // D2 2
{&DDRD, &PIND, &PORTD, 3}, // D3 3
{&DDRD, &PIND, &PORTD, 4}, // D4 4
{&DDRD, &PIND, &PORTD, 5}, // D5 5
{&DDRD, &PIND, &PORTD, 6}, // D6 6
{&DDRD, &PIND, &PORTD, 7}, // D7 7
{&DDRB, &PINB, &PORTB, 0}, // B0 8
{&DDRB, &PINB, &PORTB, 1}, // B1 9
{&DDRB, &PINB, &PORTB, 2}, // B2 10
{&DDRB, &PINB, &PORTB, 3}, // B3 11
{&DDRB, &PINB, &PORTB, 4}, // B4 12
{&DDRB, &PINB, &PORTB, 5}, // B5 13
{&DDRC, &PINC, &PORTC, 0}, // C0 14
{&DDRC, &PINC, &PORTC, 1}, // C1 15
{&DDRC, &PINC, &PORTC, 2}, // C2 16
{&DDRC, &PINC, &PORTC, 3}, // C3 17
{&DDRC, &PINC, &PORTC, 4}, // C4 18
{&DDRC, &PINC, &PORTC, 5} // C5 19
};
#endif // defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__)
//------------------------------------------------------------------------------
static const uint8_t digitalPinCount = sizeof(digitalPinMap) / sizeof(pin_map_t);
uint8_t badPinNumber(void)
__attribute__((error("Pin number is too large or not a constant")));
static inline __attribute__((always_inline))
uint8_t getPinMode(uint8_t pin) {
if (__builtin_constant_p(pin) && pin < digitalPinCount) {
return (*digitalPinMap[pin].ddr >> digitalPinMap[pin].bit) & 1;
} else {
return badPinNumber();
}
}
static inline __attribute__((always_inline))
void setPinMode(uint8_t pin, uint8_t mode) {
if (__builtin_constant_p(pin) && pin < digitalPinCount) {
if (mode) {
*digitalPinMap[pin].ddr |= 1 << digitalPinMap[pin].bit;
} else {
*digitalPinMap[pin].ddr &= ~(1 << digitalPinMap[pin].bit);
}
} else {
badPinNumber();
}
}
static inline __attribute__((always_inline))
uint8_t fastDigitalRead(uint8_t pin) {
if (__builtin_constant_p(pin) && pin < digitalPinCount) {
return (*digitalPinMap[pin].pin >> digitalPinMap[pin].bit) & 1;
} else {
return badPinNumber();
}
}
static inline __attribute__((always_inline))
void fastDigitalWrite(uint8_t pin, uint8_t value) {
if (__builtin_constant_p(pin) && pin < digitalPinCount) {
if (value) {
*digitalPinMap[pin].port |= 1 << digitalPinMap[pin].bit;
} else {
*digitalPinMap[pin].port &= ~(1 << digitalPinMap[pin].bit);
}
} else {
badPinNumber();
}
}
#endif // Sd2PinMap_h
#elif defined (__CPU_ARC__)
#if defined (__ARDUINO_ARC__)
// Two Wire (aka I2C) ports
uint8_t const SDA_PIN = 18;
uint8_t const SCL_PIN = 19;
// SPI port
uint8_t const SS_PIN = 10;
uint8_t const MOSI_PIN = 11;
uint8_t const MISO_PIN = 12;
uint8_t const SCK_PIN = 13;
#endif // Arduino ARC
#else
#error Architecture or board not supported.
#endif

View File

@@ -0,0 +1,641 @@
/* Arduino SdFat Library
Copyright (C) 2009 by William Greiman
This file is part of the Arduino SdFat Library
This Library is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with the Arduino SdFat Library. If not, see
<http://www.gnu.org/licenses/>.
*/
#ifndef SdFat_h
#define SdFat_h
/**
\file
SdFile and SdVolume classes
*/
#if defined (__AVR__) || defined (__CPU_ARC__)
#include <avr/pgmspace.h>
#endif
#include "Sd2Card.h"
#include "FatStructs.h"
#include <Print.h>
//------------------------------------------------------------------------------
/**
Allow use of deprecated functions if non-zero
*/
#define ALLOW_DEPRECATED_FUNCTIONS 1
//------------------------------------------------------------------------------
// forward declaration since SdVolume is used in SdFile
class SdVolume;
//==============================================================================
// SdFile class
#ifdef O_RDONLY //ARDUINO_ARCH_MBED
#undef O_READ
#undef O_RDONLY
#undef O_WRITE
#undef O_WRONLY
#undef O_RDWR
#undef O_ACCMODE
#undef O_APPEND
#undef O_SYNC
#undef O_CREAT
#undef O_EXCL
#undef O_TRUNC
#endif
// flags for ls()
/** ls() flag to print modify date */
uint8_t const LS_DATE = 1;
/** ls() flag to print file size */
uint8_t const LS_SIZE = 2;
/** ls() flag for recursive list of subdirectories */
uint8_t const LS_R = 4;
// use the gnu style oflag in open()
/** open() oflag for reading */
uint8_t const O_READ = 0X01;
/** open() oflag - same as O_READ */
uint8_t const O_RDONLY = O_READ;
/** open() oflag for write */
uint8_t const O_WRITE = 0X02;
/** open() oflag - same as O_WRITE */
uint8_t const O_WRONLY = O_WRITE;
/** open() oflag for reading and writing */
uint8_t const O_RDWR = (O_READ | O_WRITE);
/** open() oflag mask for access modes */
uint8_t const O_ACCMODE = (O_READ | O_WRITE);
/** The file offset shall be set to the end of the file prior to each write. */
uint8_t const O_APPEND = 0X04;
/** synchronous writes - call sync() after each write */
uint8_t const O_SYNC = 0X08;
/** create the file if nonexistent */
uint8_t const O_CREAT = 0X10;
/** If O_CREAT and O_EXCL are set, open() shall fail if the file exists */
uint8_t const O_EXCL = 0X20;
/** truncate the file to zero length */
uint8_t const O_TRUNC = 0X40;
// flags for timestamp
/** set the file's last access date */
uint8_t const T_ACCESS = 1;
/** set the file's creation date and time */
uint8_t const T_CREATE = 2;
/** Set the file's write date and time */
uint8_t const T_WRITE = 4;
// values for type_
/** This SdFile has not been opened. */
uint8_t const FAT_FILE_TYPE_CLOSED = 0;
/** SdFile for a file */
uint8_t const FAT_FILE_TYPE_NORMAL = 1;
/** SdFile for a FAT16 root directory */
uint8_t const FAT_FILE_TYPE_ROOT16 = 2;
/** SdFile for a FAT32 root directory */
uint8_t const FAT_FILE_TYPE_ROOT32 = 3;
/** SdFile for a subdirectory */
uint8_t const FAT_FILE_TYPE_SUBDIR = 4;
/** Test value for directory type */
uint8_t const FAT_FILE_TYPE_MIN_DIR = FAT_FILE_TYPE_ROOT16;
/** date field for FAT directory entry */
static inline uint16_t FAT_DATE(uint16_t year, uint8_t month, uint8_t day) {
return (year - 1980) << 9 | month << 5 | day;
}
/** year part of FAT directory date field */
static inline uint16_t FAT_YEAR(uint16_t fatDate) {
return 1980 + (fatDate >> 9);
}
/** month part of FAT directory date field */
static inline uint8_t FAT_MONTH(uint16_t fatDate) {
return (fatDate >> 5) & 0XF;
}
/** day part of FAT directory date field */
static inline uint8_t FAT_DAY(uint16_t fatDate) {
return fatDate & 0X1F;
}
/** time field for FAT directory entry */
static inline uint16_t FAT_TIME(uint8_t hour, uint8_t minute, uint8_t second) {
return hour << 11 | minute << 5 | second >> 1;
}
/** hour part of FAT directory time field */
static inline uint8_t FAT_HOUR(uint16_t fatTime) {
return fatTime >> 11;
}
/** minute part of FAT directory time field */
static inline uint8_t FAT_MINUTE(uint16_t fatTime) {
return (fatTime >> 5) & 0X3F;
}
/** second part of FAT directory time field */
static inline uint8_t FAT_SECOND(uint16_t fatTime) {
return 2 * (fatTime & 0X1F);
}
/** Default date for file timestamps is 1 Jan 2000 */
uint16_t const FAT_DEFAULT_DATE = ((2000 - 1980) << 9) | (1 << 5) | 1;
/** Default time for file timestamp is 1 am */
uint16_t const FAT_DEFAULT_TIME = (1 << 11);
//------------------------------------------------------------------------------
/**
\class SdFile
\brief Access FAT16 and FAT32 files on SD and SDHC cards.
*/
class SdFile : public Print {
public:
/** Create an instance of SdFile. */
SdFile(void) : type_(FAT_FILE_TYPE_CLOSED) {}
/**
writeError is set to true if an error occurs during a write().
Set writeError to false before calling print() and/or write() and check
for true after calls to print() and/or write().
*/
//bool writeError;
/**
Cancel unbuffered reads for this file.
See setUnbufferedRead()
*/
void clearUnbufferedRead(void) {
flags_ &= ~F_FILE_UNBUFFERED_READ;
}
uint8_t close(void);
uint8_t contiguousRange(uint32_t* bgnBlock, uint32_t* endBlock);
uint8_t createContiguous(SdFile* dirFile,
const char* fileName, uint32_t size);
/** \return The current cluster number for a file or directory. */
uint32_t curCluster(void) const {
return curCluster_;
}
/** \return The current position for a file or directory. */
uint32_t curPosition(void) const {
return curPosition_;
}
/**
Set the date/time callback function
\param[in] dateTime The user's call back function. The callback
function is of the form:
\code
void dateTime(uint16_t* date, uint16_t* time) {
uint16_t year;
uint8_t month, day, hour, minute, second;
// User gets date and time from GPS or real-time clock here
// return date using FAT_DATE macro to format fields
* *date = FAT_DATE(year, month, day);
// return time using FAT_TIME macro to format fields
* *time = FAT_TIME(hour, minute, second);
}
\endcode
Sets the function that is called when a file is created or when
a file's directory entry is modified by sync(). All timestamps,
access, creation, and modify, are set when a file is created.
sync() maintains the last access date and last modify date/time.
See the timestamp() function.
*/
static void dateTimeCallback(
void (*dateTime)(uint16_t* date, uint16_t* time)) {
dateTime_ = dateTime;
}
/**
Cancel the date/time callback function.
*/
static void dateTimeCallbackCancel(void) {
// use explicit zero since NULL is not defined for Sanguino
dateTime_ = 0;
}
/** \return Address of the block that contains this file's directory. */
uint32_t dirBlock(void) const {
return dirBlock_;
}
uint8_t dirEntry(dir_t* dir);
/** \return Index of this file's directory in the block dirBlock. */
uint8_t dirIndex(void) const {
return dirIndex_;
}
static void dirName(const dir_t& dir, char* name);
/** \return The total number of bytes in a file or directory. */
uint32_t fileSize(void) const {
return fileSize_;
}
/** \return The first cluster number for a file or directory. */
uint32_t firstCluster(void) const {
return firstCluster_;
}
/** \return True if this is a SdFile for a directory else false. */
uint8_t isDir(void) const {
return type_ >= FAT_FILE_TYPE_MIN_DIR;
}
/** \return True if this is a SdFile for a file else false. */
uint8_t isFile(void) const {
return type_ == FAT_FILE_TYPE_NORMAL;
}
/** \return True if this is a SdFile for an open file/directory else false. */
uint8_t isOpen(void) const {
return type_ != FAT_FILE_TYPE_CLOSED;
}
/** \return True if this is a SdFile for a subdirectory else false. */
uint8_t isSubDir(void) const {
return type_ == FAT_FILE_TYPE_SUBDIR;
}
/** \return True if this is a SdFile for the root directory. */
uint8_t isRoot(void) const {
return type_ == FAT_FILE_TYPE_ROOT16 || type_ == FAT_FILE_TYPE_ROOT32;
}
void ls(uint8_t flags = 0, uint8_t indent = 0);
uint8_t makeDir(SdFile* dir, const char* dirName);
uint8_t open(SdFile* dirFile, uint16_t index, uint8_t oflag);
uint8_t open(SdFile* dirFile, const char* fileName, uint8_t oflag);
uint8_t openRoot(SdVolume* vol);
static void printDirName(const dir_t& dir, uint8_t width);
static void printFatDate(uint16_t fatDate);
static void printFatTime(uint16_t fatTime);
static void printTwoDigits(uint8_t v);
/**
Read the next byte from a file.
\return For success read returns the next byte in the file as an int.
If an error occurs or end of file is reached -1 is returned.
*/
int16_t read(void) {
uint8_t b;
return read(&b, 1) == 1 ? b : -1;
}
int16_t read(void* buf, uint16_t nbyte);
int8_t readDir(dir_t* dir);
static uint8_t remove(SdFile* dirFile, const char* fileName);
uint8_t remove(void);
/** Set the file's current position to zero. */
void rewind(void) {
curPosition_ = curCluster_ = 0;
}
uint8_t rmDir(void);
uint8_t rmRfStar(void);
/** Set the files position to current position + \a pos. See seekSet(). */
uint8_t seekCur(uint32_t pos) {
return seekSet(curPosition_ + pos);
}
/**
Set the files current position to end of file. Useful to position
a file for append. See seekSet().
*/
uint8_t seekEnd(void) {
return seekSet(fileSize_);
}
uint8_t seekSet(uint32_t pos);
/**
Use unbuffered reads to access this file. Used with Wave
Shield ISR. Used with Sd2Card::partialBlockRead() in WaveRP.
Not recommended for normal applications.
*/
void setUnbufferedRead(void) {
if (isFile()) {
flags_ |= F_FILE_UNBUFFERED_READ;
}
}
uint8_t timestamp(uint8_t flag, uint16_t year, uint8_t month, uint8_t day,
uint8_t hour, uint8_t minute, uint8_t second);
uint8_t sync(uint8_t blocking = 1);
/** Type of this SdFile. You should use isFile() or isDir() instead of type()
if possible.
\return The file or directory type.
*/
uint8_t type(void) const {
return type_;
}
uint8_t truncate(uint32_t size);
/** \return Unbuffered read flag. */
uint8_t unbufferedRead(void) const {
return flags_ & F_FILE_UNBUFFERED_READ;
}
/** \return SdVolume that contains this file. */
SdVolume* volume(void) const {
return vol_;
}
size_t write(uint8_t b);
size_t write(const void* buf, uint16_t nbyte);
size_t write(const char* str);
#ifdef __AVR__
void write_P(PGM_P str);
void writeln_P(PGM_P str);
#endif
int availableForWrite(void);
//------------------------------------------------------------------------------
#if ALLOW_DEPRECATED_FUNCTIONS
// Deprecated functions - suppress cpplint warnings with NOLINT comment
/** \deprecated Use:
uint8_t SdFile::contiguousRange(uint32_t* bgnBlock, uint32_t* endBlock);
*/
uint8_t contiguousRange(uint32_t& bgnBlock, uint32_t& endBlock) { // NOLINT
return contiguousRange(&bgnBlock, &endBlock);
}
/** \deprecated Use:
uint8_t SdFile::createContiguous(SdFile* dirFile,
const char* fileName, uint32_t size)
*/
uint8_t createContiguous(SdFile& dirFile, // NOLINT
const char* fileName, uint32_t size) {
return createContiguous(&dirFile, fileName, size);
}
/**
\deprecated Use:
static void SdFile::dateTimeCallback(
void (*dateTime)(uint16_t* date, uint16_t* time));
*/
static void dateTimeCallback(
void (*dateTime)(uint16_t& date, uint16_t& time)) { // NOLINT
oldDateTime_ = dateTime;
dateTime_ = dateTime ? oldToNew : 0;
}
/** \deprecated Use: uint8_t SdFile::dirEntry(dir_t* dir); */
uint8_t dirEntry(dir_t& dir) {
return dirEntry(&dir); // NOLINT
}
/** \deprecated Use:
uint8_t SdFile::makeDir(SdFile* dir, const char* dirName);
*/
uint8_t makeDir(SdFile& dir, const char* dirName) { // NOLINT
return makeDir(&dir, dirName);
}
/** \deprecated Use:
uint8_t SdFile::open(SdFile* dirFile, const char* fileName, uint8_t oflag);
*/
uint8_t open(SdFile& dirFile, // NOLINT
const char* fileName, uint8_t oflag) {
return open(&dirFile, fileName, oflag);
}
/** \deprecated Do not use in new apps */
uint8_t open(SdFile& dirFile, const char* fileName) { // NOLINT
return open(dirFile, fileName, O_RDWR);
}
/** \deprecated Use:
uint8_t SdFile::open(SdFile* dirFile, uint16_t index, uint8_t oflag);
*/
uint8_t open(SdFile& dirFile, uint16_t index, uint8_t oflag) { // NOLINT
return open(&dirFile, index, oflag);
}
/** \deprecated Use: uint8_t SdFile::openRoot(SdVolume* vol); */
uint8_t openRoot(SdVolume& vol) {
return openRoot(&vol); // NOLINT
}
/** \deprecated Use: int8_t SdFile::readDir(dir_t* dir); */
int8_t readDir(dir_t& dir) {
return readDir(&dir); // NOLINT
}
/** \deprecated Use:
static uint8_t SdFile::remove(SdFile* dirFile, const char* fileName);
*/
static uint8_t remove(SdFile& dirFile, const char* fileName) { // NOLINT
return remove(&dirFile, fileName);
}
//------------------------------------------------------------------------------
// rest are private
private:
static void (*oldDateTime_)(uint16_t& date, uint16_t& time); // NOLINT
static void oldToNew(uint16_t* date, uint16_t* time) {
uint16_t d;
uint16_t t;
oldDateTime_(d, t);
*date = d;
*time = t;
}
#endif // ALLOW_DEPRECATED_FUNCTIONS
private:
// bits defined in flags_
// should be 0XF
static uint8_t const F_OFLAG = (O_ACCMODE | O_APPEND | O_SYNC);
// available bits
static uint8_t const F_FILE_NON_BLOCKING_WRITE = 0X10;
// a new cluster was added to the file
static uint8_t const F_FILE_CLUSTER_ADDED = 0X20;
// use unbuffered SD read
static uint8_t const F_FILE_UNBUFFERED_READ = 0X40;
// sync of directory entry required
static uint8_t const F_FILE_DIR_DIRTY = 0X80;
// make sure F_OFLAG is ok
#if ((F_FILE_NON_BLOCKING_WRITE | F_FILE_CLUSTER_ADDED | F_FILE_UNBUFFERED_READ | F_FILE_DIR_DIRTY) & F_OFLAG)
#error flags_ bits conflict
#endif // flags_ bits
// private data
uint8_t flags_; // See above for definition of flags_ bits
uint8_t type_; // type of file see above for values
uint32_t curCluster_; // cluster for current file position
uint32_t curPosition_; // current file position in bytes from beginning
uint32_t dirBlock_; // SD block that contains directory entry for file
uint8_t dirIndex_; // index of entry in dirBlock 0 <= dirIndex_ <= 0XF
uint32_t fileSize_; // file size in bytes
uint32_t firstCluster_; // first cluster of file
SdVolume* vol_; // volume where file is located
// private functions
uint8_t addCluster(void);
uint8_t addDirCluster(void);
dir_t* cacheDirEntry(uint8_t action);
static void (*dateTime_)(uint16_t* date, uint16_t* time);
static uint8_t make83Name(const char* str, uint8_t* name);
uint8_t openCachedEntry(uint8_t cacheIndex, uint8_t oflags);
dir_t* readDirCache(void);
};
//==============================================================================
// SdVolume class
/**
\brief Cache for an SD data block
*/
union cache_t {
/** Used to access cached file data blocks. */
uint8_t data[512];
/** Used to access cached FAT16 entries. */
uint16_t fat16[256];
/** Used to access cached FAT32 entries. */
uint32_t fat32[128];
/** Used to access cached directory entries. */
dir_t dir[16];
/** Used to access a cached MasterBoot Record. */
mbr_t mbr;
/** Used to access to a cached FAT boot sector. */
fbs_t fbs;
};
//------------------------------------------------------------------------------
/**
\class SdVolume
\brief Access FAT16 and FAT32 volumes on SD and SDHC cards.
*/
class SdVolume {
public:
/** Create an instance of SdVolume */
SdVolume(void) : allocSearchStart_(2), fatType_(0) {}
/** Clear the cache and returns a pointer to the cache. Used by the WaveRP
recorder to do raw write to the SD card. Not for normal apps.
*/
static uint8_t* cacheClear(void) {
cacheFlush();
cacheBlockNumber_ = 0XFFFFFFFF;
return cacheBuffer_.data;
}
/**
Initialize a FAT volume. Try partition one first then try super
floppy format.
\param[in] dev The Sd2Card where the volume is located.
\return The value one, true, is returned for success and
the value zero, false, is returned for failure. Reasons for
failure include not finding a valid partition, not finding a valid
FAT file system or an I/O error.
*/
uint8_t init(Sd2Card* dev) {
return init(dev, 1) ? true : init(dev, 0);
}
uint8_t init(Sd2Card* dev, uint8_t part);
// inline functions that return volume info
/** \return The volume's cluster size in blocks. */
uint8_t blocksPerCluster(void) const {
return blocksPerCluster_;
}
/** \return The number of blocks in one FAT. */
uint32_t blocksPerFat(void) const {
return blocksPerFat_;
}
/** \return The total number of clusters in the volume. */
uint32_t clusterCount(void) const {
return clusterCount_;
}
/** \return The shift count required to multiply by blocksPerCluster. */
uint8_t clusterSizeShift(void) const {
return clusterSizeShift_;
}
/** \return The logical block number for the start of file data. */
uint32_t dataStartBlock(void) const {
return dataStartBlock_;
}
/** \return The number of FAT structures on the volume. */
uint8_t fatCount(void) const {
return fatCount_;
}
/** \return The logical block number for the start of the first FAT. */
uint32_t fatStartBlock(void) const {
return fatStartBlock_;
}
/** \return The FAT type of the volume. Values are 12, 16 or 32. */
uint8_t fatType(void) const {
return fatType_;
}
/** \return The number of entries in the root directory for FAT16 volumes. */
uint32_t rootDirEntryCount(void) const {
return rootDirEntryCount_;
}
/** \return The logical block number for the start of the root directory
on FAT16 volumes or the first cluster number on FAT32 volumes. */
uint32_t rootDirStart(void) const {
return rootDirStart_;
}
/** return a pointer to the Sd2Card object for this volume */
static Sd2Card* sdCard(void) {
return sdCard_;
}
//------------------------------------------------------------------------------
#if ALLOW_DEPRECATED_FUNCTIONS
// Deprecated functions - suppress cpplint warnings with NOLINT comment
/** \deprecated Use: uint8_t SdVolume::init(Sd2Card* dev); */
uint8_t init(Sd2Card& dev) {
return init(&dev); // NOLINT
}
/** \deprecated Use: uint8_t SdVolume::init(Sd2Card* dev, uint8_t vol); */
uint8_t init(Sd2Card& dev, uint8_t part) { // NOLINT
return init(&dev, part);
}
#endif // ALLOW_DEPRECATED_FUNCTIONS
//------------------------------------------------------------------------------
private:
// Allow SdFile access to SdVolume private data.
friend class SdFile;
// value for action argument in cacheRawBlock to indicate read from cache
static uint8_t const CACHE_FOR_READ = 0;
// value for action argument in cacheRawBlock to indicate cache dirty
static uint8_t const CACHE_FOR_WRITE = 1;
static cache_t cacheBuffer_; // 512 byte cache for device blocks
static uint32_t cacheBlockNumber_; // Logical number of block in the cache
static Sd2Card* sdCard_; // Sd2Card object for cache
static uint8_t cacheDirty_; // cacheFlush() will write block if true
static uint32_t cacheMirrorBlock_; // block number for mirror FAT
//
uint32_t allocSearchStart_; // start cluster for alloc search
uint8_t blocksPerCluster_; // cluster size in blocks
uint32_t blocksPerFat_; // FAT size in blocks
uint32_t clusterCount_; // clusters in one FAT
uint8_t clusterSizeShift_; // shift to convert cluster count to block count
uint32_t dataStartBlock_; // first data block number
uint8_t fatCount_; // number of FATs on volume
uint32_t fatStartBlock_; // start block for first FAT
uint8_t fatType_; // volume type (12, 16, OR 32)
uint16_t rootDirEntryCount_; // number of entries in FAT16 root dir
uint32_t rootDirStart_; // root start block for FAT16, cluster for FAT32
//----------------------------------------------------------------------------
uint8_t allocContiguous(uint32_t count, uint32_t* curCluster);
uint8_t blockOfCluster(uint32_t position) const {
return (position >> 9) & (blocksPerCluster_ - 1);
}
uint32_t clusterStartBlock(uint32_t cluster) const {
return dataStartBlock_ + ((cluster - 2) << clusterSizeShift_);
}
uint32_t blockNumber(uint32_t cluster, uint32_t position) const {
return clusterStartBlock(cluster) + blockOfCluster(position);
}
static uint8_t cacheFlush(uint8_t blocking = 1);
static uint8_t cacheMirrorBlockFlush(uint8_t blocking);
static uint8_t cacheRawBlock(uint32_t blockNumber, uint8_t action);
static void cacheSetDirty(void) {
cacheDirty_ |= CACHE_FOR_WRITE;
}
static uint8_t cacheZeroBlock(uint32_t blockNumber);
uint8_t chainSize(uint32_t beginCluster, uint32_t* size) const;
uint8_t fatGet(uint32_t cluster, uint32_t* value) const;
uint8_t fatPut(uint32_t cluster, uint32_t value);
uint8_t fatPutEOC(uint32_t cluster) {
return fatPut(cluster, 0x0FFFFFFF);
}
uint8_t freeChain(uint32_t cluster);
uint8_t isEOC(uint32_t cluster) const {
return cluster >= (fatType_ == 16 ? FAT16EOC_MIN : FAT32EOC_MIN);
}
uint8_t readBlock(uint32_t block, uint8_t* dst) {
return sdCard_->readBlock(block, dst);
}
uint8_t readData(uint32_t block, uint16_t offset,
uint16_t count, uint8_t* dst) {
return sdCard_->readData(block, offset, count, dst);
}
uint8_t writeBlock(uint32_t block, const uint8_t* dst, uint8_t blocking = 1) {
return sdCard_->writeBlock(block, dst, blocking);
}
uint8_t isBusy(void) {
return sdCard_->isBusy();
}
uint8_t isCacheMirrorBlockDirty(void) {
return (cacheMirrorBlock_ != 0);
}
};
#endif // SdFat_h

View File

@@ -0,0 +1,77 @@
/* Arduino SdFat Library
Copyright (C) 2008 by William Greiman
This file is part of the Arduino SdFat Library
This Library is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with the Arduino SdFat Library. If not, see
<http://www.gnu.org/licenses/>.
*/
#ifndef SdFatUtil_h
#define SdFatUtil_h
/**
\file
Useful utility functions.
*/
#include <Arduino.h>
#ifdef __AVR__
#include <avr/pgmspace.h>
/** Store and print a string in flash memory.*/
#define PgmPrint(x) SerialPrint_P(PSTR(x))
/** Store and print a string in flash memory followed by a CR/LF.*/
#define PgmPrintln(x) SerialPrintln_P(PSTR(x))
/** Defined so doxygen works for function definitions. */
#endif
#define NOINLINE __attribute__((noinline,unused))
#define UNUSEDOK __attribute__((unused))
//------------------------------------------------------------------------------
/** Return the number of bytes currently free in RAM. */
static UNUSEDOK int FreeRam(void) {
extern int __bss_end;
extern int* __brkval;
int free_memory;
if (reinterpret_cast<int>(__brkval) == 0) {
// if no heap use from end of bss section
free_memory = reinterpret_cast<int>(&free_memory)
- reinterpret_cast<int>(&__bss_end);
} else {
// use from top of stack to heap
free_memory = reinterpret_cast<int>(&free_memory)
- reinterpret_cast<int>(__brkval);
}
return free_memory;
}
#ifdef __AVR__
//------------------------------------------------------------------------------
/**
%Print a string in flash memory to the serial port.
\param[in] str Pointer to string stored in flash memory.
*/
static NOINLINE void SerialPrint_P(PGM_P str) {
for (uint8_t c; (c = pgm_read_byte(str)); str++) {
Serial.write(c);
}
}
//------------------------------------------------------------------------------
/**
%Print a string in flash memory followed by a CR/LF.
\param[in] str Pointer to string stored in flash memory.
*/
static NOINLINE void SerialPrintln_P(PGM_P str) {
SerialPrint_P(str);
Serial.println();
}
#endif // __AVR__
#endif // #define SdFatUtil_h

View File

@@ -0,0 +1,202 @@
/* Arduino SdFat Library
Copyright (C) 2009 by William Greiman
This file is part of the Arduino SdFat Library
This Library is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with the Arduino SdFat Library. If not, see
<http://www.gnu.org/licenses/>.
*/
/**
\mainpage Arduino SdFat Library
<CENTER>Copyright &copy; 2009 by William Greiman
</CENTER>
\section Intro Introduction
The Arduino SdFat Library is a minimal implementation of FAT16 and FAT32
file systems on SD flash memory cards. Standard SD and high capacity
SDHC cards are supported.
The SdFat only supports short 8.3 names.
The main classes in SdFat are Sd2Card, SdVolume, and SdFile.
The Sd2Card class supports access to standard SD cards and SDHC cards. Most
applications will only need to call the Sd2Card::init() member function.
The SdVolume class supports FAT16 and FAT32 partitions. Most applications
will only need to call the SdVolume::init() member function.
The SdFile class provides file access functions such as open(), read(),
remove(), write(), close() and sync(). This class supports access to the root
directory and subdirectories.
A number of example are provided in the SdFat/examples folder. These were
developed to test SdFat and illustrate its use.
SdFat was developed for high speed data recording. SdFat was used to implement
an audio record/play class, WaveRP, for the Adafruit Wave Shield. This
application uses special Sd2Card calls to write to contiguous files in raw mode.
These functions reduce write latency so that audio can be recorded with the
small amount of RAM in the Arduino.
\section SDcard SD\SDHC Cards
Arduinos access SD cards using the cards SPI protocol. PCs, Macs, and
most consumer devices use the 4-bit parallel SD protocol. A card that
functions well on A PC or Mac may not work well on the Arduino.
Most cards have good SPI read performance but cards vary widely in SPI
write performance. Write performance is limited by how efficiently the
card manages internal erase/remapping operations. The Arduino cannot
optimize writes to reduce erase operations because of its limit RAM.
SanDisk cards generally have good write performance. They seem to have
more internal RAM buffering than other cards and therefore can limit
the number of flash erase operations that the Arduino forces due to its
limited RAM.
\section Hardware Hardware Configuration
SdFat was developed using an
<A HREF = "http://www.adafruit.com/"> Adafruit Industries</A>
<A HREF = "http://www.ladyada.net/make/waveshield/"> Wave Shield</A>.
The hardware interface to the SD card should not use a resistor based level
shifter. SdFat sets the SPI bus frequency to 8 MHz which results in signal
rise times that are too slow for the edge detectors in many newer SD card
controllers when resistor voltage dividers are used.
The 5 to 3.3 V level shifter for 5 V Arduinos should be IC based like the
74HC4050N based circuit shown in the file SdLevel.png. The Adafruit Wave Shield
uses a 74AHC125N. Gravitech sells SD and MicroSD Card Adapters based on the
74LCX245.
If you are using a resistor based level shifter and are having problems try
setting the SPI bus frequency to 4 MHz. This can be done by using
card.init(SPI_HALF_SPEED) to initialize the SD card.
\section comment Bugs and Comments
If you wish to report bugs or have comments, send email to fat16lib@sbcglobal.net.
\section SdFatClass SdFat Usage
SdFat uses a slightly restricted form of short names.
Only printable ASCII characters are supported. No characters with code point
values greater than 127 are allowed. Space is not allowed even though space
was allowed in the API of early versions of DOS.
Short names are limited to 8 characters followed by an optional period (.)
and extension of up to 3 characters. The characters may be any combination
of letters and digits. The following special characters are also allowed:
$ % ' - _ @ ~ ` ! ( ) { } ^ # &
Short names are always converted to upper case and their original case
value is lost.
\note
The Arduino Print class uses character
at a time writes so it was necessary to use a \link SdFile::sync() sync() \endlink
function to control when data is written to the SD card.
\par
An application which writes to a file using \link Print::print() print()\endlink,
\link Print::println() println() \endlink
or \link SdFile::write write() \endlink must call \link SdFile::sync() sync() \endlink
at the appropriate time to force data and directory information to be written
to the SD Card. Data and directory information are also written to the SD card
when \link SdFile::close() close() \endlink is called.
\par
Applications must use care calling \link SdFile::sync() sync() \endlink
since 2048 bytes of I/O is required to update file and
directory information. This includes writing the current data block, reading
the block that contains the directory entry for update, writing the directory
block back and reading back the current data block.
It is possible to open a file with two or more instances of SdFile. A file may
be corrupted if data is written to the file by more than one instance of SdFile.
\section HowTo How to format SD Cards as FAT Volumes
You should use a freshly formatted SD card for best performance. FAT
file systems become slower if many files have been created and deleted.
This is because the directory entry for a deleted file is marked as deleted,
but is not deleted. When a new file is created, these entries must be scanned
before creating the file, a flaw in the FAT design. Also files can become
fragmented which causes reads and writes to be slower.
Microsoft operating systems support removable media formatted with a
Master Boot Record, MBR, or formatted as a super floppy with a FAT Boot Sector
in block zero.
Microsoft operating systems expect MBR formatted removable media
to have only one partition. The first partition should be used.
Microsoft operating systems do not support partitioning SD flash cards.
If you erase an SD card with a program like KillDisk, Most versions of
Windows will format the card as a super floppy.
The best way to restore an SD card's format is to use SDFormatter
which can be downloaded from:
http://www.sdcard.org/consumers/formatter/
SDFormatter aligns flash erase boundaries with file
system structures which reduces write latency and file system overhead.
SDFormatter does not have an option for FAT type so it may format
small cards as FAT12.
After the MBR is restored by SDFormatter you may need to reformat small
cards that have been formatted FAT12 to force the volume type to be FAT16.
If you reformat the SD card with an OS utility, choose a cluster size that
will result in:
4084 < CountOfClusters && CountOfClusters < 65525
The volume will then be FAT16.
If you are formatting an SD card on OS X or Linux, be sure to use the first
partition. Format this partition with a cluster count in above range.
\section References References
Adafruit Industries:
http://www.adafruit.com/
http://www.ladyada.net/make/waveshield/
The Arduino site:
http://www.arduino.cc/
For more information about FAT file systems see:
http://www.microsoft.com/whdc/system/platform/firmware/fatgen.mspx
For information about using SD cards as SPI devices see:
http://www.sdcard.org/developers/tech/sdcard/pls/Simplified_Physical_Layer_Spec.pdf
The ATmega328 datasheet:
http://www.atmel.com/dyn/resources/prod_documents/doc8161.pdf
*/

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,232 @@
/* Arduino Sd2Card Library
Copyright (C) 2009 by William Greiman
This file is part of the Arduino Sd2Card Library
This Library is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with the Arduino Sd2Card Library. If not, see
<http://www.gnu.org/licenses/>.
*/
#ifndef SdInfo_h
#define SdInfo_h
#include <stdint.h>
// Based on the document:
//
// SD Specifications
// Part 1
// Physical Layer
// Simplified Specification
// Version 2.00
// September 25, 2006
//
// www.sdcard.org/developers/tech/sdcard/pls/Simplified_Physical_Layer_Spec.pdf
//------------------------------------------------------------------------------
// SD card commands
/** GO_IDLE_STATE - init card in spi mode if CS low */
uint8_t const CMD0 = 0X00;
/** SEND_IF_COND - verify SD Memory Card interface operating condition.*/
uint8_t const CMD8 = 0X08;
/** SEND_CSD - read the Card Specific Data (CSD register) */
uint8_t const CMD9 = 0X09;
/** SEND_CID - read the card identification information (CID register) */
uint8_t const CMD10 = 0X0A;
/** SEND_STATUS - read the card status register */
uint8_t const CMD13 = 0X0D;
/** READ_BLOCK - read a single data block from the card */
uint8_t const CMD17 = 0X11;
/** WRITE_BLOCK - write a single data block to the card */
uint8_t const CMD24 = 0X18;
/** WRITE_MULTIPLE_BLOCK - write blocks of data until a STOP_TRANSMISSION */
uint8_t const CMD25 = 0X19;
/** ERASE_WR_BLK_START - sets the address of the first block to be erased */
uint8_t const CMD32 = 0X20;
/** ERASE_WR_BLK_END - sets the address of the last block of the continuous
range to be erased*/
uint8_t const CMD33 = 0X21;
/** ERASE - erase all previously selected blocks */
uint8_t const CMD38 = 0X26;
/** APP_CMD - escape for application specific command */
uint8_t const CMD55 = 0X37;
/** READ_OCR - read the OCR register of a card */
uint8_t const CMD58 = 0X3A;
/** SET_WR_BLK_ERASE_COUNT - Set the number of write blocks to be
pre-erased before writing */
uint8_t const ACMD23 = 0X17;
/** SD_SEND_OP_COMD - Sends host capacity support information and
activates the card's initialization process */
uint8_t const ACMD41 = 0X29;
//------------------------------------------------------------------------------
/** status for card in the ready state */
uint8_t const R1_READY_STATE = 0X00;
/** status for card in the idle state */
uint8_t const R1_IDLE_STATE = 0X01;
/** status bit for illegal command */
uint8_t const R1_ILLEGAL_COMMAND = 0X04;
/** start data token for read or write single block*/
uint8_t const DATA_START_BLOCK = 0XFE;
/** stop token for write multiple blocks*/
uint8_t const STOP_TRAN_TOKEN = 0XFD;
/** start data token for write multiple blocks*/
uint8_t const WRITE_MULTIPLE_TOKEN = 0XFC;
/** mask for data response tokens after a write block operation */
uint8_t const DATA_RES_MASK = 0X1F;
/** write data accepted token */
uint8_t const DATA_RES_ACCEPTED = 0X05;
//------------------------------------------------------------------------------
typedef struct CID {
// byte 0
uint8_t mid; // Manufacturer ID
// byte 1-2
char oid[2]; // OEM/Application ID
// byte 3-7
char pnm[5]; // Product name
// byte 8
unsigned prv_m : 4; // Product revision n.m
unsigned prv_n : 4;
// byte 9-12
uint32_t psn; // Product serial number
// byte 13
unsigned mdt_year_high : 4; // Manufacturing date
unsigned reserved : 4;
// byte 14
unsigned mdt_month : 4;
unsigned mdt_year_low : 4;
// byte 15
unsigned always1 : 1;
unsigned crc : 7;
} cid_t;
//------------------------------------------------------------------------------
// CSD for version 1.00 cards
typedef struct CSDV1 {
// byte 0
unsigned reserved1 : 6;
unsigned csd_ver : 2;
// byte 1
uint8_t taac;
// byte 2
uint8_t nsac;
// byte 3
uint8_t tran_speed;
// byte 4
uint8_t ccc_high;
// byte 5
unsigned read_bl_len : 4;
unsigned ccc_low : 4;
// byte 6
unsigned c_size_high : 2;
unsigned reserved2 : 2;
unsigned dsr_imp : 1;
unsigned read_blk_misalign : 1;
unsigned write_blk_misalign : 1;
unsigned read_bl_partial : 1;
// byte 7
uint8_t c_size_mid;
// byte 8
unsigned vdd_r_curr_max : 3;
unsigned vdd_r_curr_min : 3;
unsigned c_size_low : 2;
// byte 9
unsigned c_size_mult_high : 2;
unsigned vdd_w_cur_max : 3;
unsigned vdd_w_curr_min : 3;
// byte 10
unsigned sector_size_high : 6;
unsigned erase_blk_en : 1;
unsigned c_size_mult_low : 1;
// byte 11
unsigned wp_grp_size : 7;
unsigned sector_size_low : 1;
// byte 12
unsigned write_bl_len_high : 2;
unsigned r2w_factor : 3;
unsigned reserved3 : 2;
unsigned wp_grp_enable : 1;
// byte 13
unsigned reserved4 : 5;
unsigned write_partial : 1;
unsigned write_bl_len_low : 2;
// byte 14
unsigned reserved5: 2;
unsigned file_format : 2;
unsigned tmp_write_protect : 1;
unsigned perm_write_protect : 1;
unsigned copy : 1;
unsigned file_format_grp : 1;
// byte 15
unsigned always1 : 1;
unsigned crc : 7;
} csd1_t;
//------------------------------------------------------------------------------
// CSD for version 2.00 cards
typedef struct CSDV2 {
// byte 0
unsigned reserved1 : 6;
unsigned csd_ver : 2;
// byte 1
uint8_t taac;
// byte 2
uint8_t nsac;
// byte 3
uint8_t tran_speed;
// byte 4
uint8_t ccc_high;
// byte 5
unsigned read_bl_len : 4;
unsigned ccc_low : 4;
// byte 6
unsigned reserved2 : 4;
unsigned dsr_imp : 1;
unsigned read_blk_misalign : 1;
unsigned write_blk_misalign : 1;
unsigned read_bl_partial : 1;
// byte 7
unsigned reserved3 : 2;
unsigned c_size_high : 6;
// byte 8
uint8_t c_size_mid;
// byte 9
uint8_t c_size_low;
// byte 10
unsigned sector_size_high : 6;
unsigned erase_blk_en : 1;
unsigned reserved4 : 1;
// byte 11
unsigned wp_grp_size : 7;
unsigned sector_size_low : 1;
// byte 12
unsigned write_bl_len_high : 2;
unsigned r2w_factor : 3;
unsigned reserved5 : 2;
unsigned wp_grp_enable : 1;
// byte 13
unsigned reserved6 : 5;
unsigned write_partial : 1;
unsigned write_bl_len_low : 2;
// byte 14
unsigned reserved7: 2;
unsigned file_format : 2;
unsigned tmp_write_protect : 1;
unsigned perm_write_protect : 1;
unsigned copy : 1;
unsigned file_format_grp : 1;
// byte 15
unsigned always1 : 1;
unsigned crc : 7;
} csd2_t;
//------------------------------------------------------------------------------
// union of old and new style CSD register
union csd_t {
csd1_t v1;
csd2_t v2;
};
#endif // SdInfo_h

View File

@@ -0,0 +1,351 @@
/* Arduino SdFat Library
Copyright (C) 2009 by William Greiman
This file is part of the Arduino SdFat Library
This Library is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with the Arduino SdFat Library. If not, see
<http://www.gnu.org/licenses/>.
*/
#include "SdFat.h"
//------------------------------------------------------------------------------
// raw block cache
// init cacheBlockNumber_to invalid SD block number
uint32_t SdVolume::cacheBlockNumber_ = 0XFFFFFFFF;
cache_t SdVolume::cacheBuffer_; // 512 byte cache for Sd2Card
Sd2Card* SdVolume::sdCard_; // pointer to SD card object
uint8_t SdVolume::cacheDirty_ = 0; // cacheFlush() will write block if true
uint32_t SdVolume::cacheMirrorBlock_ = 0; // mirror block for second FAT
//------------------------------------------------------------------------------
// find a contiguous group of clusters
uint8_t SdVolume::allocContiguous(uint32_t count, uint32_t* curCluster) {
// start of group
uint32_t bgnCluster;
// flag to save place to start next search
uint8_t setStart;
// set search start cluster
if (*curCluster) {
// try to make file contiguous
bgnCluster = *curCluster + 1;
// don't save new start location
setStart = false;
} else {
// start at likely place for free cluster
bgnCluster = allocSearchStart_;
// save next search start if one cluster
setStart = 1 == count;
}
// end of group
uint32_t endCluster = bgnCluster;
// last cluster of FAT
uint32_t fatEnd = clusterCount_ + 1;
// search the FAT for free clusters
for (uint32_t n = 0;; n++, endCluster++) {
// can't find space checked all clusters
if (n >= clusterCount_) {
return false;
}
// past end - start from beginning of FAT
if (endCluster > fatEnd) {
bgnCluster = endCluster = 2;
}
uint32_t f;
if (!fatGet(endCluster, &f)) {
return false;
}
if (f != 0) {
// cluster in use try next cluster as bgnCluster
bgnCluster = endCluster + 1;
} else if ((endCluster - bgnCluster + 1) == count) {
// done - found space
break;
}
}
// mark end of chain
if (!fatPutEOC(endCluster)) {
return false;
}
// link clusters
while (endCluster > bgnCluster) {
if (!fatPut(endCluster - 1, endCluster)) {
return false;
}
endCluster--;
}
if (*curCluster != 0) {
// connect chains
if (!fatPut(*curCluster, bgnCluster)) {
return false;
}
}
// return first cluster number to caller
*curCluster = bgnCluster;
// remember possible next free cluster
if (setStart) {
allocSearchStart_ = bgnCluster + 1;
}
return true;
}
//------------------------------------------------------------------------------
uint8_t SdVolume::cacheFlush(uint8_t blocking) {
if (cacheDirty_) {
if (!sdCard_->writeBlock(cacheBlockNumber_, cacheBuffer_.data, blocking)) {
return false;
}
if (!blocking) {
return true;
}
// mirror FAT tables
if (!cacheMirrorBlockFlush(blocking)) {
return false;
}
cacheDirty_ = 0;
}
return true;
}
//------------------------------------------------------------------------------
uint8_t SdVolume::cacheMirrorBlockFlush(uint8_t blocking) {
if (cacheMirrorBlock_) {
if (!sdCard_->writeBlock(cacheMirrorBlock_, cacheBuffer_.data, blocking)) {
return false;
}
cacheMirrorBlock_ = 0;
}
return true;
}
//------------------------------------------------------------------------------
uint8_t SdVolume::cacheRawBlock(uint32_t blockNumber, uint8_t action) {
if (cacheBlockNumber_ != blockNumber) {
if (!cacheFlush()) {
return false;
}
if (!sdCard_->readBlock(blockNumber, cacheBuffer_.data)) {
return false;
}
cacheBlockNumber_ = blockNumber;
}
cacheDirty_ |= action;
return true;
}
//------------------------------------------------------------------------------
// cache a zero block for blockNumber
uint8_t SdVolume::cacheZeroBlock(uint32_t blockNumber) {
if (!cacheFlush()) {
return false;
}
// loop take less flash than memset(cacheBuffer_.data, 0, 512);
for (uint16_t i = 0; i < 512; i++) {
cacheBuffer_.data[i] = 0;
}
cacheBlockNumber_ = blockNumber;
cacheSetDirty();
return true;
}
//------------------------------------------------------------------------------
// return the size in bytes of a cluster chain
uint8_t SdVolume::chainSize(uint32_t cluster, uint32_t* size) const {
uint32_t s = 0;
do {
if (!fatGet(cluster, &cluster)) {
return false;
}
s += 512UL << clusterSizeShift_;
} while (!isEOC(cluster));
*size = s;
return true;
}
//------------------------------------------------------------------------------
// Fetch a FAT entry
uint8_t SdVolume::fatGet(uint32_t cluster, uint32_t* value) const {
if (cluster > (clusterCount_ + 1)) {
return false;
}
uint32_t lba = fatStartBlock_;
lba += fatType_ == 16 ? cluster >> 8 : cluster >> 7;
if (lba != cacheBlockNumber_) {
if (!cacheRawBlock(lba, CACHE_FOR_READ)) {
return false;
}
}
if (fatType_ == 16) {
*value = cacheBuffer_.fat16[cluster & 0XFF];
} else {
*value = cacheBuffer_.fat32[cluster & 0X7F] & FAT32MASK;
}
return true;
}
//------------------------------------------------------------------------------
// Store a FAT entry
uint8_t SdVolume::fatPut(uint32_t cluster, uint32_t value) {
// error if reserved cluster
if (cluster < 2) {
return false;
}
// error if not in FAT
if (cluster > (clusterCount_ + 1)) {
return false;
}
// calculate block address for entry
uint32_t lba = fatStartBlock_;
lba += fatType_ == 16 ? cluster >> 8 : cluster >> 7;
if (lba != cacheBlockNumber_) {
if (!cacheRawBlock(lba, CACHE_FOR_READ)) {
return false;
}
}
// store entry
if (fatType_ == 16) {
cacheBuffer_.fat16[cluster & 0XFF] = value;
} else {
cacheBuffer_.fat32[cluster & 0X7F] = value;
}
cacheSetDirty();
// mirror second FAT
if (fatCount_ > 1) {
cacheMirrorBlock_ = lba + blocksPerFat_;
}
return true;
}
//------------------------------------------------------------------------------
// free a cluster chain
uint8_t SdVolume::freeChain(uint32_t cluster) {
// clear free cluster location
allocSearchStart_ = 2;
do {
uint32_t next;
if (!fatGet(cluster, &next)) {
return false;
}
// free cluster
if (!fatPut(cluster, 0)) {
return false;
}
cluster = next;
} while (!isEOC(cluster));
return true;
}
//------------------------------------------------------------------------------
/**
Initialize a FAT volume.
\param[in] dev The SD card where the volume is located.
\param[in] part The partition to be used. Legal values for \a part are
1-4 to use the corresponding partition on a device formatted with
a MBR, Master Boot Record, or zero if the device is formatted as
a super floppy with the FAT boot sector in block zero.
\return The value one, true, is returned for success and
the value zero, false, is returned for failure. Reasons for
failure include not finding a valid partition, not finding a valid
FAT file system in the specified partition or an I/O error.
*/
uint8_t SdVolume::init(Sd2Card* dev, uint8_t part) {
uint32_t volumeStartBlock = 0;
sdCard_ = dev;
// if part == 0 assume super floppy with FAT boot sector in block zero
// if part > 0 assume mbr volume with partition table
if (part) {
if (part > 4) {
return false;
}
if (!cacheRawBlock(volumeStartBlock, CACHE_FOR_READ)) {
return false;
}
part_t* p = &cacheBuffer_.mbr.part[part - 1];
if ((p->boot & 0X7F) != 0 ||
p->totalSectors < 100 ||
p->firstSector == 0) {
// not a valid partition
return false;
}
volumeStartBlock = p->firstSector;
}
if (!cacheRawBlock(volumeStartBlock, CACHE_FOR_READ)) {
return false;
}
bpb_t* bpb = &cacheBuffer_.fbs.bpb;
if (bpb->bytesPerSector != 512 ||
bpb->fatCount == 0 ||
bpb->reservedSectorCount == 0 ||
bpb->sectorsPerCluster == 0) {
// not valid FAT volume
return false;
}
fatCount_ = bpb->fatCount;
blocksPerCluster_ = bpb->sectorsPerCluster;
// determine shift that is same as multiply by blocksPerCluster_
clusterSizeShift_ = 0;
while (blocksPerCluster_ != (1 << clusterSizeShift_)) {
// error if not power of 2
if (clusterSizeShift_++ > 7) {
return false;
}
}
blocksPerFat_ = bpb->sectorsPerFat16 ?
bpb->sectorsPerFat16 : bpb->sectorsPerFat32;
fatStartBlock_ = volumeStartBlock + bpb->reservedSectorCount;
// count for FAT16 zero for FAT32
rootDirEntryCount_ = bpb->rootDirEntryCount;
// directory start for FAT16 dataStart for FAT32
rootDirStart_ = fatStartBlock_ + bpb->fatCount * blocksPerFat_;
// data start for FAT16 and FAT32
dataStartBlock_ = rootDirStart_ + ((32 * bpb->rootDirEntryCount + 511) / 512);
// total blocks for FAT16 or FAT32
uint32_t totalBlocks = bpb->totalSectors16 ?
bpb->totalSectors16 : bpb->totalSectors32;
// total data blocks
clusterCount_ = totalBlocks - (dataStartBlock_ - volumeStartBlock);
// divide by cluster size to get cluster count
clusterCount_ >>= clusterSizeShift_;
// FAT type is determined by cluster count
if (clusterCount_ < 4085) {
fatType_ = 12;
} else if (clusterCount_ < 65525) {
fatType_ = 16;
} else {
rootDirStart_ = bpb->fat32RootCluster;
fatType_ = 32;
}
return true;
}